Graphs of Hydrogen-Bond Networks to Dissect Protein Conformational Dynamics

被引:15
|
作者
Bondar, Ana-Nicoleta [1 ,2 ,3 ]
机构
[1] Univ Bucharest, Fac Phys, Bucharest 077125, Romania
[2] Forschungszentrum Julich, Inst Neurosci & Med, D-52425 Julich, Germany
[3] Forschungszentrum Julich, Inst Adv Simulat IAS 5 INM 9, Computat Biomed, D-52425 Julich, Germany
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2022年 / 126卷 / 22期
关键词
SARS-COV-2; SPIKE; WATER-MOLECULES; DRUG DISCOVERY; ACTIVATION; CENTRALITY; ALGORITHM; MECHANISM; CHANNEL; TARGETS; ACE2;
D O I
10.1021/acs.jpcb.2c00200
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dynamic hydrogen bonds and hydrogen-bond networks are ubiquitous in proteins and protein complexes. Functional roles that have been assigned to hydrogen-bond networks include structural plasticity for protein function, allosteric conformational coupling, long-distance proton transfers, and transient storage of protons. Advances in structural biology provide invaluable insights into architectures of large proteins and protein complexes of direct interest to human physiology and disease, including G Protein Coupled Receptors (GPCRs) and the SARS-Covid-19 spike protein S, and give rise to the challenge of how to identify those interactions that are more likely to govern protein dynamics. This Perspective discusses applications of graph-based algorithms to dissect dynamical hydrogen-bond networks of protein complexes, with illustrations for GPCRs and spike protein S. H-bond graphs provide an overview of sites in GPCR structures where hydrogen-bond dynamics would be required to assemble longer-distance networks between functionally important motifs. In the case of spike protein S, graphs identify regions of the protein where hydrogen bonds rearrange during the reaction cycle and where local hydrogen-bond networks likely change in a virus variant of concern.
引用
收藏
页码:3973 / 3984
页数:12
相关论文
共 50 条
  • [21] Hydrogen-bond networks for hydrolyses of anhydrides
    Yamabe, S
    Ishikawa, T
    JOURNAL OF ORGANIC CHEMISTRY, 1997, 62 (20): : 7049 - 7053
  • [22] Conformational and thermal phase behavior of oligomethylene chains constrained by carbohydrate hydrogen-bond networks
    Masuda, M
    Vill, V
    Shimizu, T
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (49) : 12327 - 12333
  • [23] Spatial Dependence of Protein-Water Collective Hydrogen-Bond Dynamics
    Heyden, Matthias
    Tobias, Douglas J.
    PHYSICAL REVIEW LETTERS, 2013, 111 (21)
  • [24] A SIMPLE HYDROGEN-BOND POTENTIAL FUNCTION FOR CONFORMATIONAL STUDIES
    BALASUBRAMANIAN, R
    SEETHARAMULU, P
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 1983, 5 (03) : 167 - 170
  • [25] Hydrogen-Bond Networks: Strengths of Different Types of Hydrogen Bonds and An Alternative to the Low Barrier Hydrogen-Bond Proposal
    Shokri, Alireza
    Wang, Yanping
    O'Doherty, George A.
    Wang, Xue-Bin
    Kass, Steven R.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (47) : 17919 - 17924
  • [26] "Hydridic Hydrogen-Bond Donors" Are Not Hydrogen-Bond Donors
    Santos, Lucas de Azevedo
    Vermeeren, Pascal
    Bickelhaupt, F. Matthias
    Guerra, Celia Fonseca
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (37) : 25701 - 25709
  • [27] The hydrogen-bond collective dynamics in liquid methanol
    Bellissima, Stefano
    De Panfilis, Simone
    Bafile, Ubaldo
    Cunsolo, Alessandro
    Gonzalez, Miguel Angel
    Guarini, Eleonora
    Formisano, Ferdinando
    SCIENTIFIC REPORTS, 2016, 6
  • [28] Hydrogen-Bond Networks in Finite Ice Nanotubes
    Tokmachev, A. M.
    Dronskowski, R.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2011, 32 (01) : 99 - 105
  • [29] Hydrogen-bond Dynamics at a Water/Solid Interface
    Jiang, Ying
    ACTA PHYSICO-CHIMICA SINICA, 2020, 36 (08)
  • [30] STATISTICAL-MECHANICS OF HYDROGEN-BOND NETWORKS
    KRAUSCHE, T
    NADLER, W
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1992, 86 (03): : 433 - 442