Hydrogen-Bond Networks: Strengths of Different Types of Hydrogen Bonds and An Alternative to the Low Barrier Hydrogen-Bond Proposal

被引:46
|
作者
Shokri, Alireza [1 ]
Wang, Yanping [2 ]
O'Doherty, George A. [2 ]
Wang, Xue-Bin [3 ,4 ]
Kass, Steven R. [1 ]
机构
[1] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA
[2] Northeastern Univ, Dept Chem & Chem Biol, Boston, MA 02115 USA
[3] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA
[4] Washington State Univ, Dept Phys, Richland, WA 99354 USA
基金
美国国家科学基金会;
关键词
DENSITY FUNCTIONALS; DIELECTRIC-PROPERTIES; MOLECULAR-DYNAMICS; CARBON ACIDS; GAS-PHASE; STATES; THERMOCHEMISTRY; MONOANIONS; ENERGIES;
D O I
10.1021/ja408762r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report quantifying the strengths of different types of hydrogen bonds in hydrogen-bond networks (HBNs) via measurement of the adiabatic electron detachment energy of the conjugate base of a small covalent polyol model compound (i.e., (HOCH2CH2CH(OH)CH2)(2)CHOH) in the gas phase and the pK(a) of the corresponding acid in DMSO. The latter result reveals that the hydrogen bonds to the charged center and those that are one solvation shell further away (i.e., primary and secondary) provide 5.3 and 2.5 pK(a) units of stabilization per hydrogen bond in DMSO. Computations indicate that these energies increase to 8.4 and 3.9 pK(a) units in benzene and that the total stabilizations are 16 (DMSO) and 25 (benzene) pK(a) units. Calculations on a larger linear heptaol (i.e., (HOCH2CH2CH(OH)CH2CH(OH)CH2)(2)CHOH) reveal that the terminal hydroxyl groups each contribute 0.6 pK(a) units of stabilization in DMSO and 1.1 pK(a) units in benzene. All of these results taken together indicate that the presence of a charged center can provide a powerful energetic driving force for enzyme catalysis and conformational changes such as in protein folding due to multiple hydrogen bonds in a HBN.
引用
收藏
页码:17919 / 17924
页数:6
相关论文
共 50 条
  • [1] THE HYDROGEN-BOND - A WEAK BOND WITH MANY STRENGTHS
    WILBRAHAM, AC
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1983, 185 (MAR): : 38 - CHED
  • [2] "Hydridic Hydrogen-Bond Donors" Are Not Hydrogen-Bond Donors
    Santos, Lucas de Azevedo
    Vermeeren, Pascal
    Bickelhaupt, F. Matthias
    Guerra, Celia Fonseca
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (37) : 25701 - 25709
  • [3] THE HYDROGEN-BOND
    MARECHAL, Y
    RECHERCHE, 1989, 20 (209): : 480 - 489
  • [4] UNIVERSALITY IN HYDROGEN-BOND NETWORKS
    NADLER, W
    KRAUSCHE, T
    PHYSICAL REVIEW A, 1991, 44 (12): : R7888 - R7890
  • [5] Hydrogen-bond strengths by magnetically induced currents
    Fliegl, Heike
    Lehtonen, Olli
    Sundholm, Dage
    Kaila, Ville R. I.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (02) : 434 - 437
  • [6] Hydrogen-Bond Networks for Hydrolyses of Anhydrides
    Yamabe, S.
    Ishikawa, T.
    Journal of Organic Chemistry, 62 (20):
  • [7] MODEL FOR HYDROGEN-BOND
    ALLEN, LC
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1975, 72 (12) : 4701 - 4705
  • [8] Hydrogen-bond catalysis
    Mansouri, Maryam
    IRANIAN JOURNAL OF CATALYSIS, 2021, 11 (02): : 191 - 197
  • [9] HYDROGEN-BOND PUZZLE
    Grodzka, J.
    Pomianowski, A.
    PHYSICOCHEMICAL PROBLEMS OF MINERAL PROCESSING, 2010, 44 : 35 - 40
  • [10] HYDROGEN-BOND RADII
    WALLWORK, SC
    ACTA CRYSTALLOGRAPHICA, 1962, 15 (JUL): : 758 - &