Hydrogen-Bond Networks: Strengths of Different Types of Hydrogen Bonds and An Alternative to the Low Barrier Hydrogen-Bond Proposal

被引:46
|
作者
Shokri, Alireza [1 ]
Wang, Yanping [2 ]
O'Doherty, George A. [2 ]
Wang, Xue-Bin [3 ,4 ]
Kass, Steven R. [1 ]
机构
[1] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA
[2] Northeastern Univ, Dept Chem & Chem Biol, Boston, MA 02115 USA
[3] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA
[4] Washington State Univ, Dept Phys, Richland, WA 99354 USA
基金
美国国家科学基金会;
关键词
DENSITY FUNCTIONALS; DIELECTRIC-PROPERTIES; MOLECULAR-DYNAMICS; CARBON ACIDS; GAS-PHASE; STATES; THERMOCHEMISTRY; MONOANIONS; ENERGIES;
D O I
10.1021/ja408762r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report quantifying the strengths of different types of hydrogen bonds in hydrogen-bond networks (HBNs) via measurement of the adiabatic electron detachment energy of the conjugate base of a small covalent polyol model compound (i.e., (HOCH2CH2CH(OH)CH2)(2)CHOH) in the gas phase and the pK(a) of the corresponding acid in DMSO. The latter result reveals that the hydrogen bonds to the charged center and those that are one solvation shell further away (i.e., primary and secondary) provide 5.3 and 2.5 pK(a) units of stabilization per hydrogen bond in DMSO. Computations indicate that these energies increase to 8.4 and 3.9 pK(a) units in benzene and that the total stabilizations are 16 (DMSO) and 25 (benzene) pK(a) units. Calculations on a larger linear heptaol (i.e., (HOCH2CH2CH(OH)CH2CH(OH)CH2)(2)CHOH) reveal that the terminal hydroxyl groups each contribute 0.6 pK(a) units of stabilization in DMSO and 1.1 pK(a) units in benzene. All of these results taken together indicate that the presence of a charged center can provide a powerful energetic driving force for enzyme catalysis and conformational changes such as in protein folding due to multiple hydrogen bonds in a HBN.
引用
收藏
页码:17919 / 17924
页数:6
相关论文
共 50 条
  • [21] Estimation on the individual hydrogen-bond strength in molecules with multiple hydrogen bonds
    Dong, Hao
    Hua, Weijie
    Li, Shuhua
    JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 111 (15): : 2941 - 2945
  • [22] Predicting Hydrogen-Bond Strengths by Structural and Thermodynamic Databases
    Gilli, Paola
    Pretto, Loretta
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2007, 63 : S73 - S73
  • [23] Hydrogen-Bond Networks in Finite Ice Nanotubes
    Tokmachev, A. M.
    Dronskowski, R.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2011, 32 (01) : 99 - 105
  • [24] STATISTICAL-MECHANICS OF HYDROGEN-BOND NETWORKS
    KRAUSCHE, T
    NADLER, W
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1992, 86 (03): : 433 - 442
  • [25] DOES AMMONIA HYDROGEN-BOND
    NELSON, DD
    FRASER, GT
    KLEMPERER, W
    SCIENCE, 1987, 238 (4834) : 1670 - 1674
  • [26] INTERMOLECULAR HYDROGEN-BOND IN ALLOPHANATES
    NIZELSKY, YN
    KOZAK, NV
    UKRAINSKII KHIMICHESKII ZHURNAL, 1988, 54 (06): : 622 - 624
  • [27] DYNAMIC MODEL OF HYDROGEN-BOND
    WITKOWSKI, A
    MOLECULAR PHYSICS, 1975, 29 (05) : 1441 - 1452
  • [28] ELECTRON MODEL OF THE HYDROGEN-BOND
    LUTSKII, AE
    ZHURNAL OBSHCHEI KHIMII, 1979, 49 (11): : 2582 - 2588
  • [29] HYDROGEN-BOND STRENGTH OF ICE
    NISSAN, AH
    NATURE, 1956, 178 (4547) : 1411 - 1412
  • [30] Gold as a hydrogen-bond acceptor
    Esterhuysen, Catharine
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2016, 72 : S113 - S113