Hydrogen-Bond Networks: Strengths of Different Types of Hydrogen Bonds and An Alternative to the Low Barrier Hydrogen-Bond Proposal

被引:46
|
作者
Shokri, Alireza [1 ]
Wang, Yanping [2 ]
O'Doherty, George A. [2 ]
Wang, Xue-Bin [3 ,4 ]
Kass, Steven R. [1 ]
机构
[1] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA
[2] Northeastern Univ, Dept Chem & Chem Biol, Boston, MA 02115 USA
[3] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA
[4] Washington State Univ, Dept Phys, Richland, WA 99354 USA
基金
美国国家科学基金会;
关键词
DENSITY FUNCTIONALS; DIELECTRIC-PROPERTIES; MOLECULAR-DYNAMICS; CARBON ACIDS; GAS-PHASE; STATES; THERMOCHEMISTRY; MONOANIONS; ENERGIES;
D O I
10.1021/ja408762r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report quantifying the strengths of different types of hydrogen bonds in hydrogen-bond networks (HBNs) via measurement of the adiabatic electron detachment energy of the conjugate base of a small covalent polyol model compound (i.e., (HOCH2CH2CH(OH)CH2)(2)CHOH) in the gas phase and the pK(a) of the corresponding acid in DMSO. The latter result reveals that the hydrogen bonds to the charged center and those that are one solvation shell further away (i.e., primary and secondary) provide 5.3 and 2.5 pK(a) units of stabilization per hydrogen bond in DMSO. Computations indicate that these energies increase to 8.4 and 3.9 pK(a) units in benzene and that the total stabilizations are 16 (DMSO) and 25 (benzene) pK(a) units. Calculations on a larger linear heptaol (i.e., (HOCH2CH2CH(OH)CH2CH(OH)CH2)(2)CHOH) reveal that the terminal hydroxyl groups each contribute 0.6 pK(a) units of stabilization in DMSO and 1.1 pK(a) units in benzene. All of these results taken together indicate that the presence of a charged center can provide a powerful energetic driving force for enzyme catalysis and conformational changes such as in protein folding due to multiple hydrogen bonds in a HBN.
引用
收藏
页码:17919 / 17924
页数:6
相关论文
共 50 条
  • [41] The Hydrogen-bond Basicity of Carbenes
    Abraham, Michael H.
    Elguero, Jose
    Alkorta, Ibon
    CROATICA CHEMICA ACTA, 2018, 91 (01) : 121 - 124
  • [42] INTERMOLECULAR HYDROGEN-BOND VIBRATIONS
    NOVAK, A
    CROATICA CHEMICA ACTA, 1982, 55 (1-2) : 147 - 169
  • [43] HYDROGEN-BOND BASICITY OF NITROCOMPOUNDS
    LAURENCE, C
    BERTHELOT, M
    LUCON, M
    MORRIS, DG
    JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2, 1994, (03): : 491 - 493
  • [44] HYDROGEN-BOND PATTERNS.
    Davis, Raymond E.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1996, 52 : C264 - C264
  • [45] HYDROGEN-BOND BASICITY OF NITRILES
    BERTHELOT, M
    HELBERT, M
    LAURENCE, C
    LEQUESTEL, JY
    JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, 1993, 6 (05) : 302 - 306
  • [46] AN ANALYSIS OF THE HYDROGEN-BOND IN ICE
    WHITE, JC
    DAVIDSON, ER
    JOURNAL OF CHEMICAL PHYSICS, 1990, 93 (11): : 8029 - 8035
  • [47] HYDROGEN-BOND IN SUBSTITUTED UREAS
    KOZLOVA, TV
    KOZLOV, NA
    ZHARKOV, VV
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY,USSR, 1971, 45 (08): : 1197 - &
  • [48] INTRAMOLECULAR HYDROGEN-BOND IN XYLETHANE
    RIVKINA, TV
    MIRFAIZOV, KM
    ZHUBANOV, BA
    ZHURNAL FIZICHESKOI KHIMII, 1983, 57 (10): : 2592 - 2593
  • [49] INTRAMOLECULAR HYDROGEN-BOND IN MALONALDEHYDE
    ROWE, WF
    DUERST, RW
    WILSON, EB
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1976, 98 (13) : 4021 - 4023
  • [50] THE HYDROGEN-BOND IN MOLECULAR RECOGNITION
    FERSHT, AR
    TRENDS IN BIOCHEMICAL SCIENCES, 1987, 12 (08) : 301 - 304