Graphs of Hydrogen-Bond Networks to Dissect Protein Conformational Dynamics

被引:15
|
作者
Bondar, Ana-Nicoleta [1 ,2 ,3 ]
机构
[1] Univ Bucharest, Fac Phys, Bucharest 077125, Romania
[2] Forschungszentrum Julich, Inst Neurosci & Med, D-52425 Julich, Germany
[3] Forschungszentrum Julich, Inst Adv Simulat IAS 5 INM 9, Computat Biomed, D-52425 Julich, Germany
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2022年 / 126卷 / 22期
关键词
SARS-COV-2; SPIKE; WATER-MOLECULES; DRUG DISCOVERY; ACTIVATION; CENTRALITY; ALGORITHM; MECHANISM; CHANNEL; TARGETS; ACE2;
D O I
10.1021/acs.jpcb.2c00200
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dynamic hydrogen bonds and hydrogen-bond networks are ubiquitous in proteins and protein complexes. Functional roles that have been assigned to hydrogen-bond networks include structural plasticity for protein function, allosteric conformational coupling, long-distance proton transfers, and transient storage of protons. Advances in structural biology provide invaluable insights into architectures of large proteins and protein complexes of direct interest to human physiology and disease, including G Protein Coupled Receptors (GPCRs) and the SARS-Covid-19 spike protein S, and give rise to the challenge of how to identify those interactions that are more likely to govern protein dynamics. This Perspective discusses applications of graph-based algorithms to dissect dynamical hydrogen-bond networks of protein complexes, with illustrations for GPCRs and spike protein S. H-bond graphs provide an overview of sites in GPCR structures where hydrogen-bond dynamics would be required to assemble longer-distance networks between functionally important motifs. In the case of spike protein S, graphs identify regions of the protein where hydrogen bonds rearrange during the reaction cycle and where local hydrogen-bond networks likely change in a virus variant of concern.
引用
收藏
页码:3973 / 3984
页数:12
相关论文
共 50 条
  • [42] Water Hydrogen-Bond Dynamics around Amino Acids: The Key Role of Hydrophilic Hydrogen-Bond Acceptor Groups
    Sterpone, Fabio
    Stirnemann, Guillaume
    Hynes, James T.
    Laage, Damien
    JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (05): : 2083 - 2089
  • [43] METASTABILITY OF CONFORMATIONAL HYDROGEN-BOND LATTICE STATE AND CONFORMATIONAL MEMORY OF NATIVE BIOLOGICAL MACROMOLECULES
    BYKHOVSK.VK
    BIOFIZIKA, 1973, 18 (03): : 573 - 575
  • [44] Dynamics of proton transfer in imidazole hydrogen-bond chains
    Bua-ngern, Worapong
    Chaiwongwattana, Sermsiri
    Suwannakham, Parichart
    Sagarik, Kritsana
    RSC ADVANCES, 2016, 6 (101): : 99391 - 99403
  • [45] Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water
    Fecko, CJ
    Eaves, JD
    Loparo, JJ
    Tokmakoff, A
    Geissler, PL
    SCIENCE, 2003, 301 (5640) : 1698 - 1702
  • [46] HYDROGEN-BOND DYNAMICS IN BIOLOGICAL INFORMATION-PROCESSING
    CONRAD, M
    BIOPHYSICAL JOURNAL, 1988, 53 (02) : A402 - A402
  • [47] Hydrated Electron Diffusion: The Importance of Hydrogen-Bond Dynamics
    Tay, Kafui A.
    Boutin, Anne
    JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (35): : 11943 - 11949
  • [48] Hierarchical lattice models of hydrogen-bond networks in water
    Dandekar, Rahul
    Hassanali, Ali A.
    PHYSICAL REVIEW E, 2018, 97 (06)
  • [49] Hydrogen-bond networks in linear, branched and tertiary alcohols
    Stephenson, S. K.
    Offeman, R. D.
    Robertson, G. H.
    Orts, W. J.
    CHEMICAL ENGINEERING SCIENCE, 2007, 62 (11) : 3019 - 3031
  • [50] Collective hydrogen-bond rearrangement dynamics in liquid water
    Schulz, R.
    von Hansen, Y.
    Daldrop, J. O.
    Kappler, J.
    Noe, F.
    Netz, R. R.
    JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (24):