Existence of solutions to a Kirchhoff ψ-Hilfer fractional p-Laplacian equations

被引:26
|
作者
Ezati, Roozbeh [1 ]
Nyamoradi, Nemat [1 ]
机构
[1] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
关键词
psi-Hilfer fractional differential equation; genus theory; Kirchhoff equation; DIFFUSION;
D O I
10.1002/mma.7593
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using the genus properties in critical point theory, we study the existence and multiplicity of solutions to the following Kirchhoff psi-Hilfer fractional p-Laplacian: {a+b integral(T)(0)vertical bar D-H(0+)alpha,beta;psi xi(x)vertical bar(p)dx)D-H(T)alpha,beta;psi (vertical bar D-H(0+)alpha,beta;psi xi(x)vertical bar(p-2) D-H(0+)alpha,beta;psi xi(x)) -lambda vertical bar xi(x)vertical bar(p-2) xi(x) = g(x,xi(x)), I-0+(beta(beta-1);psi) xi(0) = I-T(beta(beta-1);psi) xi(T), where D-H(0+)alpha,beta;psi xi(x) and D-H(T)alpha,beta;psi are psi-Hilfer fractional derivatives left-sided and right-sided of order 1/p < alpha < 1, a, b > 0 are constants, 0 <= beta <= 1 and I-0+(beta(beta-1);psi) (.) and I-T(beta(beta-1);psi) (.) are psi-Riemann-Liouville fractional integrals left-sided and right-sided, and g :[0.T] x R -> R is a continuous function.
引用
收藏
页码:12909 / 12920
页数:12
相关论文
共 50 条
  • [41] Existence of ground state sign-changing solutions for p-Laplacian equations of Kirchhoff type
    Chen, Jianhua
    Tang, Xianhua
    Gao, Zu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (14) : 5056 - 5067
  • [42] Existence of sign-changing solutions for a class of p-Laplacian Kirchhoff-type equations
    Han, Xiaotian
    Ma, Xiaoyan
    He, Xiaoming
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (02) : 181 - 203
  • [43] Existence of infinitely many solutions for fractional p-Laplacian Schrödinger–Kirchhoff type equations with sign-changing potential
    Youpei Zhang
    Xianhua Tang
    Jian Zhang
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 569 - 586
  • [44] Existence of infinitely many solutions for fractional p-Laplacian Schrodinger-Kirchhoff type equations with sign-changing potential
    Zhang, Youpei
    Tang, Xianhua
    Zhang, Jian
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 569 - 586
  • [45] Infinitely Many Solutions for Critical Degenerate Kirchhoff Type Equations Involving the Fractional p-Laplacian
    Binlin, Zhang
    Fiscella, Alessio
    Liang, Sihua
    APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 80 (01): : 63 - 80
  • [46] Infinitely Many Solutions for Schrodinger-Choquard-Kirchhoff Equations Involving the Fractional p-Laplacian
    Wang, Li
    Han, Tao
    Wang, Ji Xiu
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (02) : 315 - 332
  • [47] Infinitely Many Solutions for Schr?dinger–Choquard–Kirchhoff Equations Involving the Fractional p-Laplacian
    Li WANG
    Tao HAN
    Ji Xiu WANG
    Acta Mathematica Sinica,English Series, 2021, (02) : 315 - 332
  • [48] Existence of Solutions for Nonlinear Wave Equations with p-Laplacian
    Gao, Yunzhu
    Huang, Shaoyi
    ICMS2010: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION ICMS2010, VOL 5: APPLIED MATHEMATICS AND MATHEMATICAL MODELLING, 2010, : 70 - 74
  • [49] Existence of nontrivial solutions for p-Laplacian equations in RN
    Liu, Chungen
    Zheng, Youquan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (02) : 669 - 679
  • [50] Existence of periodic solutions for a class of p-Laplacian equations
    Xiaojun Chang
    Yu Qiao
    Boundary Value Problems, 2013