Existence of solutions to a Kirchhoff ψ-Hilfer fractional p-Laplacian equations

被引:26
|
作者
Ezati, Roozbeh [1 ]
Nyamoradi, Nemat [1 ]
机构
[1] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
关键词
psi-Hilfer fractional differential equation; genus theory; Kirchhoff equation; DIFFUSION;
D O I
10.1002/mma.7593
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using the genus properties in critical point theory, we study the existence and multiplicity of solutions to the following Kirchhoff psi-Hilfer fractional p-Laplacian: {a+b integral(T)(0)vertical bar D-H(0+)alpha,beta;psi xi(x)vertical bar(p)dx)D-H(T)alpha,beta;psi (vertical bar D-H(0+)alpha,beta;psi xi(x)vertical bar(p-2) D-H(0+)alpha,beta;psi xi(x)) -lambda vertical bar xi(x)vertical bar(p-2) xi(x) = g(x,xi(x)), I-0+(beta(beta-1);psi) xi(0) = I-T(beta(beta-1);psi) xi(T), where D-H(0+)alpha,beta;psi xi(x) and D-H(T)alpha,beta;psi are psi-Hilfer fractional derivatives left-sided and right-sided of order 1/p < alpha < 1, a, b > 0 are constants, 0 <= beta <= 1 and I-0+(beta(beta-1);psi) (.) and I-T(beta(beta-1);psi) (.) are psi-Riemann-Liouville fractional integrals left-sided and right-sided, and g :[0.T] x R -> R is a continuous function.
引用
收藏
页码:12909 / 12920
页数:12
相关论文
共 50 条
  • [21] Existence of Solutions for a Class of Fractional p-Laplacian Equations with Innovative Conditions
    Hassine, Abderrazek B.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2025, 19 (02)
  • [22] Existence of nontrivial solutions for Schrodinger-Kirchhoff type equations involving the fractional p-Laplacian and local nonlinearity
    Gao, Liu
    Chen, Chunfang
    Chen, Jianhua
    Zhu, Chuanxi
    AIMS MATHEMATICS, 2021, 6 (02): : 1332 - 1347
  • [23] Existence of Solutions for a Class of Fractional p-Laplacian Equations with Innovative Conditions
    Hassine, Abderrazek B.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 1600, 1 (00): : 0370-2693 - 1873-2445
  • [24] EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR THE FRACTIONAL DIFFERENTIAL EQUATIONS WITH P-LAPLACIAN IN HPν,η:ψ
    Sousa, J. Vanterler da C.
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (02): : 622 - 661
  • [25] EXISTENCE OF SOLUTIONS FOR FRACTIONAL IMPULSIVE DIFFERENTIAL EQUATIONS WITH p-LAPLACIAN OPERATOR
    Liu, Z.
    Lu, L.
    Szanto, I.
    ACTA MATHEMATICA HUNGARICA, 2013, 141 (03) : 203 - 219
  • [26] Existence of solutions for a coupled system of fractional p-Laplacian equations at resonance
    Hu, Zhigang
    Liu, Wenbin
    Liu, Jiaying
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [27] Existence of solutions for a coupled system of fractional p-Laplacian equations at resonance
    Zhigang Hu
    Wenbin Liu
    Jiaying Liu
    Advances in Difference Equations, 2013
  • [28] EXISTENCE OF SOLUTIONS FOR CRITICAL FRACTIONAL p-LAPLACIAN EQUATIONS WITH INDEFINITE WEIGHTS
    Cui, Na
    Sun, Hong-Rui
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021,
  • [29] Existence and nonexistence of solutions for a class of Kirchhoff type equation involving fractional p-Laplacian
    Liu, Senli
    Chen, Haibo
    Yang, Jie
    Su, Yu
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (03)
  • [30] Existence and nonexistence of solutions for a class of Kirchhoff type equation involving fractional p-Laplacian
    Senli Liu
    Haibo Chen
    Jie Yang
    Yu Su
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114