Existence of solutions to a Kirchhoff ψ-Hilfer fractional p-Laplacian equations

被引:26
|
作者
Ezati, Roozbeh [1 ]
Nyamoradi, Nemat [1 ]
机构
[1] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
关键词
psi-Hilfer fractional differential equation; genus theory; Kirchhoff equation; DIFFUSION;
D O I
10.1002/mma.7593
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using the genus properties in critical point theory, we study the existence and multiplicity of solutions to the following Kirchhoff psi-Hilfer fractional p-Laplacian: {a+b integral(T)(0)vertical bar D-H(0+)alpha,beta;psi xi(x)vertical bar(p)dx)D-H(T)alpha,beta;psi (vertical bar D-H(0+)alpha,beta;psi xi(x)vertical bar(p-2) D-H(0+)alpha,beta;psi xi(x)) -lambda vertical bar xi(x)vertical bar(p-2) xi(x) = g(x,xi(x)), I-0+(beta(beta-1);psi) xi(0) = I-T(beta(beta-1);psi) xi(T), where D-H(0+)alpha,beta;psi xi(x) and D-H(T)alpha,beta;psi are psi-Hilfer fractional derivatives left-sided and right-sided of order 1/p < alpha < 1, a, b > 0 are constants, 0 <= beta <= 1 and I-0+(beta(beta-1);psi) (.) and I-T(beta(beta-1);psi) (.) are psi-Riemann-Liouville fractional integrals left-sided and right-sided, and g :[0.T] x R -> R is a continuous function.
引用
收藏
页码:12909 / 12920
页数:12
相关论文
共 50 条
  • [11] The existence of solutions for fractional differential equations with p-Laplacian at resonance
    Jiang, Weihua
    Qiu, Jing
    Yang, Caixia
    CHAOS, 2017, 27 (03)
  • [12] Existence andmultiplicity of solutions for Kirchhoff type equations involving fractional p-Laplacian without compact condition
    Zhang, Youpei
    Tang, Xianhua
    Zhang, Jian
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 3147 - 3167
  • [13] Existence and multiplicity of solutions for Kirchhoff type equations involving fractional p-Laplacian without compact condition
    Youpei Zhang
    Xianhua Tang
    Jian Zhang
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3147 - 3167
  • [14] Existence of Solutions for Kirchhoff-Type Fractional Dirichlet Problem with p-Laplacian
    Kang, Danyang
    Liu, Cuiling
    Zhang, Xingyong
    MATHEMATICS, 2020, 8 (01)
  • [15] Existence of solutions for a Kirchhoff type problem involving the fractional p-Laplacian operator
    Chen, Wenjing
    Deng, Shengbing
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2015, (87) : 1 - 8
  • [16] Existence of solutions for p-Laplacian parabolic Kirchhoff equation
    Chen, Wenjing
    Zhou, Ting
    APPLIED MATHEMATICS LETTERS, 2021, 122
  • [17] Existence results for Schrodinger-Choquard-Kirchhoff equations involving the fractional p-Laplacian
    Pucci, Patrizia
    Xiang, Mingqi
    Zhang, Binlin
    ADVANCES IN CALCULUS OF VARIATIONS, 2019, 12 (03) : 253 - 275
  • [18] EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR CRITICAL KIRCHHOFF-CHOQUARD EQUATIONS INVOLVING THE FRACTIONAL p-LAPLACIAN ON THE HEISENBERG GROUP
    Bai, Shujie
    Song, Yueqiang
    Repovs, Dusan D.
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2024, 8 (01): : 143 - 166
  • [19] EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR FRACTIONAL DIFFERENTIAL EQUATIONS WITH p-LAPLACIAN AT RESONANCE
    Sousa, Jose vanterler da c.
    Pigossi, Mariane
    Nyamoradi, Nemat
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 2024 (34) : 1 - 17
  • [20] Existence of solutions for fractional impulsive differential equations with p-Laplacian operator
    Zhenhai Liu
    Liang Lu
    Iván Szántó
    Acta Mathematica Hungarica, 2013, 141 : 203 - 219