Advances and Challenges in De Novo Drug Design Using Three-Dimensional Deep Generative Models

被引:28
|
作者
Xie, Weixin [1 ]
Wang, Fanhao [1 ]
Li, Yibo [2 ]
Lai, Luhua [1 ,3 ]
Pei, Jianfeng [1 ]
机构
[1] Peking Univ, Acad Adv Interdisciplinary Studies, Ctr Quantitat Biol, Beijing 100871, Peoples R China
[2] Peking Univ, Acad Adv Interdisciplinary Studies, Ctr Life Sci, Beijing 100871, Peoples R China
[3] Peking Univ, Coll Chem & Mol Engn, Peking Tsinghua Ctr Life Sci BNLMS, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
de novo drug design; deep learning; generative model; three-dimentional generation; structure-based generation; structure-based drug design; INFORMATION;
D O I
10.1021/acs.jcim.2c00042
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
A persistent goal forde novodrug design is togenerate novel chemical compounds with desirable properties in alabor-, time-, and cost-efficient manner. Deep generative modelsprovide alternative routes to this goal. Numerous modelarchitectures and optimization strategies have been explored inrecent years, most of which have been developed to generate two-dimensional molecular structures. Some generative models aimingat three-dimensional (3D) molecule generation have also beenproposed, gaining attention for their unique advantages andpotential to directly design drug-like molecules in a target-conditioning manner. This review highlights current developmentsin 3D molecular generative models combined with deep learningand discusses future directions forde novodrug design.
引用
收藏
页码:2269 / 2279
页数:11
相关论文
共 50 条
  • [41] De novo prediction of RNA 3D structures with deep generative models
    Ramakers, Julius
    Blum, Christopher Frederik
    Koenig, Sabrina
    Harmeling, Stefan
    Kollmann, Markus
    PLOS ONE, 2024, 19 (02):
  • [42] Phase Diagrams of Three-Dimensional Anderson and Quantum Percolation Models Using Deep Three-Dimensional Convolutional Neural Network
    Mano, Tomohiro
    Ohtsuki, Tomi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2017, 86 (11)
  • [43] De novo design of luciferases using deep learning
    Yeh, Andy Hsien-Wei
    Norn, Christoffer
    Kipnis, Yakov
    Tischer, Doug
    Pellock, Samuel J.
    Evans, Declan
    Ma, Pengchen
    Lee, Gyu Rie
    Zhang, Jason Z.
    Anishchenko, Ivan
    Coventry, Brian
    Cao, Longxing
    Dauparas, Justas
    Halabiya, Samer
    DeWitt, Michelle
    Carter, Lauren
    Houk, K. N.
    Baker, David
    NATURE, 2023, 614 (7949) : 774 - +
  • [44] De novo design of luciferases using deep learning
    Andy Hsien-Wei Yeh
    Christoffer Norn
    Yakov Kipnis
    Doug Tischer
    Samuel J. Pellock
    Declan Evans
    Pengchen Ma
    Gyu Rie Lee
    Jason Z. Zhang
    Ivan Anishchenko
    Brian Coventry
    Longxing Cao
    Justas Dauparas
    Samer Halabiya
    Michelle DeWitt
    Lauren Carter
    K. N. Houk
    David Baker
    Nature, 2023, 614 : 774 - 780
  • [45] Design of three-dimensional finite element models
    Rombach, Guenter A.
    BETON- UND STAHLBETONBAU, 2007, 102 (04) : 207 - 214
  • [46] De novo prediction of three-dimensional structures for major protein families
    Bonneau, R
    Strauss, CEM
    Rohl, CA
    Chivian, D
    Bradley, P
    Malmström, L
    Robertson, T
    Baker, D
    JOURNAL OF MOLECULAR BIOLOGY, 2002, 322 (01) : 65 - 78
  • [47] Image-derived, Three-dimensional Generative Models of Cellular Organization
    Peng, Tao
    Murphy, Robert F.
    CYTOMETRY PART A, 2011, 79A (05) : 383 - 391
  • [48] Combining generative artificial intelligence and on-chip synthesis for de novo drug design
    Grisoni, Francesca
    Huisman, Berend J. H.
    Button, Alexander L.
    Moret, Michael
    Atz, Kenneth
    Merk, Daniel
    Schneider, Gisbert
    SCIENCE ADVANCES, 2021, 7 (24)
  • [49] Multi-objective de novo drug design with conditional graph generative model
    Li, Yibo
    Zhang, Liangren
    Liu, Zhenming
    JOURNAL OF CHEMINFORMATICS, 2018, 10
  • [50] Multi-objective de novo drug design with conditional graph generative model
    Yibo Li
    Liangren Zhang
    Zhenming Liu
    Journal of Cheminformatics, 10