Advances and Challenges in De Novo Drug Design Using Three-Dimensional Deep Generative Models

被引:28
|
作者
Xie, Weixin [1 ]
Wang, Fanhao [1 ]
Li, Yibo [2 ]
Lai, Luhua [1 ,3 ]
Pei, Jianfeng [1 ]
机构
[1] Peking Univ, Acad Adv Interdisciplinary Studies, Ctr Quantitat Biol, Beijing 100871, Peoples R China
[2] Peking Univ, Acad Adv Interdisciplinary Studies, Ctr Life Sci, Beijing 100871, Peoples R China
[3] Peking Univ, Coll Chem & Mol Engn, Peking Tsinghua Ctr Life Sci BNLMS, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
de novo drug design; deep learning; generative model; three-dimentional generation; structure-based generation; structure-based drug design; INFORMATION;
D O I
10.1021/acs.jcim.2c00042
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
A persistent goal forde novodrug design is togenerate novel chemical compounds with desirable properties in alabor-, time-, and cost-efficient manner. Deep generative modelsprovide alternative routes to this goal. Numerous modelarchitectures and optimization strategies have been explored inrecent years, most of which have been developed to generate two-dimensional molecular structures. Some generative models aimingat three-dimensional (3D) molecule generation have also beenproposed, gaining attention for their unique advantages andpotential to directly design drug-like molecules in a target-conditioning manner. This review highlights current developmentsin 3D molecular generative models combined with deep learningand discusses future directions forde novodrug design.
引用
收藏
页码:2269 / 2279
页数:11
相关论文
共 50 条
  • [21] Structure-based de novo design of ligands using a three-dimensional model of the insulin receptor
    Tan, C
    Wei, LH
    Ottensmeyer, FP
    Goldfine, I
    Maddux, BA
    Yip, CC
    Batey, RA
    Kotra, LP
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2004, 14 (06) : 1407 - 1410
  • [22] Safety design by using three-dimensional simulation models
    Jarvinen, J
    Kuivanen, R
    Viitaniemi, J
    INTERNATIONAL JOURNAL OF INDUSTRIAL ERGONOMICS, 1996, 17 (04) : 343 - 350
  • [23] Application advances of deep learning methods for de novo drug design and molecular dynamics simulation
    Bai, Qifeng
    Liu, Shuo
    Tian, Yanan
    Xu, Tingyang
    Banegas-Luna, Antonio Jesus
    Perez-Sanchez, Horacio
    Huang, Junzhou
    Liu, Huanxiang
    Yao, Xiaojun
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2022, 12 (03)
  • [24] Deep reinforcement learning for de novo drug design
    Popova, Mariya
    Isayev, Olexandr
    Tropsha, Alexander
    SCIENCE ADVANCES, 2018, 4 (07):
  • [25] Molecular substructure tree generative model for de novo drug design
    Wang, Shuang
    Song, Tao
    Zhang, Shugang
    Jiang, Mingjian
    Wei, Zhiqiang
    Li, Zhen
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
  • [26] De Novo Design of κ-Opioid Receptor Antagonists Using a Generative Deep-Learning Framework
    Salas-Estrada, Leslie
    Provasi, Davide
    Qiu, Xing
    Kaniskan, Husnu Umit
    Huang, Xi-Ping
    DiBerto, Jeffrey F.
    Ribeiro, Joao Marcelo Lamim
    Jin, Jian
    Roth, Bryan L.
    Filizola, Marta
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (16) : 5056 - 5065
  • [27] Shape-Based Generative Modeling for de Novo Drug Design
    Skalic, Miha
    Jimenez, Jose
    Sabbadin, Davide
    De Fabritiis, Gianni
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (03) : 1205 - 1214
  • [28] De Novo Structure-Based Drug Design Using Deep Learning
    Krishnan, Sowmya Ramaswamy
    Bung, Navneet
    Vangala, Sarveswara Rao
    Srinivasan, Rajgopal
    Bulusu, Gopalakrishnan
    Roy, Arijit
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (21) : 5100 - 5109
  • [29] Advances in multiparameter optimization methods for de novo drug design
    Segall, Matthew
    EXPERT OPINION ON DRUG DISCOVERY, 2014, 9 (07) : 803 - 817
  • [30] Attention-based generative models for de novo molecular design
    Dollar, Orion
    Joshi, Nisarg
    Beck, David A. C.
    Pfaendtner, Jim
    CHEMICAL SCIENCE, 2021, 12 (24) : 8362 - 8372