Advances and Challenges in De Novo Drug Design Using Three-Dimensional Deep Generative Models

被引:28
|
作者
Xie, Weixin [1 ]
Wang, Fanhao [1 ]
Li, Yibo [2 ]
Lai, Luhua [1 ,3 ]
Pei, Jianfeng [1 ]
机构
[1] Peking Univ, Acad Adv Interdisciplinary Studies, Ctr Quantitat Biol, Beijing 100871, Peoples R China
[2] Peking Univ, Acad Adv Interdisciplinary Studies, Ctr Life Sci, Beijing 100871, Peoples R China
[3] Peking Univ, Coll Chem & Mol Engn, Peking Tsinghua Ctr Life Sci BNLMS, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
de novo drug design; deep learning; generative model; three-dimentional generation; structure-based generation; structure-based drug design; INFORMATION;
D O I
10.1021/acs.jcim.2c00042
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
A persistent goal forde novodrug design is togenerate novel chemical compounds with desirable properties in alabor-, time-, and cost-efficient manner. Deep generative modelsprovide alternative routes to this goal. Numerous modelarchitectures and optimization strategies have been explored inrecent years, most of which have been developed to generate two-dimensional molecular structures. Some generative models aimingat three-dimensional (3D) molecule generation have also beenproposed, gaining attention for their unique advantages andpotential to directly design drug-like molecules in a target-conditioning manner. This review highlights current developmentsin 3D molecular generative models combined with deep learningand discusses future directions forde novodrug design.
引用
收藏
页码:2269 / 2279
页数:11
相关论文
共 50 条
  • [31] Three-dimensional skin models as tools for transdermal drug delivery: challenges and limitations
    Van Gele, Mireille
    Geusens, Barbara
    Brochez, Lieve
    Speeckaert, Reinhart
    Lambert, Jo
    EXPERT OPINION ON DRUG DELIVERY, 2011, 8 (06) : 705 - 720
  • [32] Advances in three-dimensional bioprinting of bone: Progress and challenges
    Midha, Swati
    Dalela, Manu
    Sybil, Deborah
    Patra, Prabir
    Mohanty, Sujata
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2019, 13 (06) : 925 - 945
  • [33] DNMG: Deep molecular generative model by fusion of 3D information for de novo drug design
    Song, Tao
    Ren, Yongqi
    Wang, Shuang
    Han, Peifu
    Wang, Lulu
    Li, Xue
    Rodriguez-Paton, Alfonso
    METHODS, 2023, 211 : 10 - 22
  • [34] Deep generative models for ligand-based de novo design applied to multi-parametric optimization
    Perron, Quentin
    Mirguet, Olivier
    Tajmouati, Hamza
    Skiredj, Adam
    Rojas, Anne
    Gohier, Arnaud
    Ducrot, Pierre
    Bourguignon, Marie-Pierre
    Sansilvestri-Morel, Patricia
    Do Huu, Nicolas
    Gellibert, Francoise
    Gaston-Mathe, Yann
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2022, 43 (10) : 692 - 703
  • [35] AlphaFold Meets De Novo Drug Design: Leveraging Structural Protein Information in Multitarget Molecular Generative Models
    Bernatavicius, Andrius
    Sicho, Martin
    Janssen, Antonius P. A.
    Hassen, Alan Kai
    Preuss, Mike
    van Westen, Gerard J. P.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (21) : 8113 - 8122
  • [36] Deep learning approaches for de novo drug design: An overview
    Wang, Mingyang
    Wang, Zhe
    Sun, Huiyong
    Wang, Jike
    Shen, Chao
    Weng, Gaoqi
    Chai, Xin
    Li, Honglin
    Cao, Dongsheng
    Hou, Tingjun
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2022, 72 : 135 - 144
  • [37] De-novo drug design with deep reinforcement learning
    Popova, Mariya
    Isayev, Olexandr
    Tropsha, Alexander
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [38] Prospective de novo drug design with deep interactome learning
    Atz, Kenneth
    Cotos, Leandro
    Isert, Clemens
    Hakansson, Maria
    Focht, Dorota
    Hilleke, Mattis
    Nippa, David F.
    Iff, Michael
    Ledergerber, Jann
    Schiebroek, Carl C. G.
    Romeo, Valentina
    Hiss, Jan A.
    Merk, Daniel
    Schneider, Petra
    Kuhn, Bernd
    Grether, Uwe
    Schneider, Gisbert
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [39] Accelerating De Novo Drug Design against Novel Proteins Using Deep Learning
    Krishnan, Sowmya Ramaswamy
    Bung, Navneet
    Bulusu, Gopalakrishnan
    Roy, Arijit
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (02) : 621 - 630
  • [40] De Novo Molecule Design Using Molecular Generative Models Constrained by Ligand-Protein Interactions
    Zhang, Jie
    Chen, Hongming
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (14) : 3291 - 3306