Bulk Universality for Wigner Matrices

被引:0
|
作者
Erdos, Laszlo [1 ]
Peche, Sandrine [2 ]
Ramirez, Jose A. [3 ]
Schlein, Benjamin [4 ]
Yau, Horng-Tzer [5 ]
机构
[1] Univ Munich, Inst Math, D-80333 Munich, Germany
[2] Univ Grenoble 1, Inst Fourier, F-38402 St Martin Dheres, France
[3] Univ Costa Rica, Dept Math, San Jose 2060, Costa Rica
[4] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
[5] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
STATISTICAL THEORY; COMPLEX SYSTEMS; ENERGY LEVELS; ORTHOGONAL POLYNOMIALS; EXPONENTIAL WEIGHTS; SEMICIRCLE LAW; ASYMPTOTICS; DELOCALIZATION; RESPECT;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider N x N Hermitian Wigner random matrices H where the probability density for each matrix element is given by the density v(x) = e(-U(x)). We prove that the eigenvalue statistics in the bulk are given by the Dyson sine kernel provided that U is an element of C(6)(R) with at most polynomially growing derivatives and v(x) <= C e(-C vertical bar x vertical bar) for x large. The proof is based upon an approximate time reversal of the Dyson Brownian motion combined with the convergence of the eigenvalue density to the Wigner semicircle law on short scales. (C) 2010 Wiley Periodicals, Inc.
引用
收藏
页码:895 / 925
页数:31
相关论文
共 50 条