Bulk universality for real matrices with independent and identically distributed entries

被引:0
|
作者
Osman, Mohammed [1 ]
机构
[1] Queen Mary Univ London, London, England
来源
关键词
random matrices; universality; GENERALIZED WIGNER MATRICES; FIXED-ENERGY UNIVERSALITY; EIGENVALUES;
D O I
10.1214/24-EJP1262
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider real, Gauss-divisible matrices A t = A + root tB, where B is from the real Ginibre ensemble. We prove that the bulk correlation functions converge to a universal limit for t = O(N - 1 / 3+epsilon ) if A satisfies certain local laws. If A = root 1 N (xi jk ) N j,k =1 with xi jk independent and identically distributed real random variables having zero mean, unit variance and finite moments, the Gaussian component can be removed using local laws proven by Bourgade-Yau-Yin, Alt-Erdos-Kr & uuml;ger and Cipolloni-Erdos-Schr & ouml;der and the four moment theorem of Tao-Vu.
引用
收藏
页数:66
相关论文
共 50 条