Bulk Universality for Wigner Matrices

被引:0
|
作者
Erdos, Laszlo [1 ]
Peche, Sandrine [2 ]
Ramirez, Jose A. [3 ]
Schlein, Benjamin [4 ]
Yau, Horng-Tzer [5 ]
机构
[1] Univ Munich, Inst Math, D-80333 Munich, Germany
[2] Univ Grenoble 1, Inst Fourier, F-38402 St Martin Dheres, France
[3] Univ Costa Rica, Dept Math, San Jose 2060, Costa Rica
[4] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
[5] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
STATISTICAL THEORY; COMPLEX SYSTEMS; ENERGY LEVELS; ORTHOGONAL POLYNOMIALS; EXPONENTIAL WEIGHTS; SEMICIRCLE LAW; ASYMPTOTICS; DELOCALIZATION; RESPECT;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider N x N Hermitian Wigner random matrices H where the probability density for each matrix element is given by the density v(x) = e(-U(x)). We prove that the eigenvalue statistics in the bulk are given by the Dyson sine kernel provided that U is an element of C(6)(R) with at most polynomially growing derivatives and v(x) <= C e(-C vertical bar x vertical bar) for x large. The proof is based upon an approximate time reversal of the Dyson Brownian motion combined with the convergence of the eigenvalue density to the Wigner semicircle law on short scales. (C) 2010 Wiley Periodicals, Inc.
引用
收藏
页码:895 / 925
页数:31
相关论文
共 50 条
  • [41] Bulk universality for complex non-Hermitian matrices with independent and identically distributed entries
    Maltsev, Anna
    Osman, Mohammed
    PROBABILITY THEORY AND RELATED FIELDS, 2024,
  • [42] UNIVERSALITY OF COVARIANCE MATRICES
    Pillai, Natesh S.
    Yin, Jun
    ANNALS OF APPLIED PROBABILITY, 2014, 24 (03): : 935 - 1001
  • [43] Bulk and soft-edge universality for singular values of products of Ginibre random matrices
    Liu, Dang-Zheng
    Wang, Dong
    Zhang, Lun
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (04): : 1734 - 1762
  • [44] BULK UNIVERSALITY AND CLOCK SPACING OF ZEROS FOR ERGODIC JACOBI MATRICES WITH ABSOLUTELY CONTINUOUS SPECTRUM
    Avila, Artur
    Last, Yoram
    Simon, Barry
    ANALYSIS & PDE, 2010, 3 (01): : 81 - 108
  • [45] Characteristic polynomials of products of non-Hermitian Wigner matrices: finite-N results and Lyapunov universality
    Akemann, Gernot
    Goetze, Friedrich
    Neuschel, Thorsten
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2021, 26
  • [46] Pseudo-Wigner Matrices
    Soloveychik, Ilya
    Xiang, Yu
    Tarokh, Vahid
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (04) : 3170 - 3178
  • [47] Eigenvector distribution of Wigner matrices
    Antti Knowles
    Jun Yin
    Probability Theory and Related Fields, 2013, 155 : 543 - 582
  • [48] Random characteristics for Wigner matrices
    Soosten
    Warzel, Simone
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2019, 24
  • [49] Spectral Properties of Wigner Matrices
    Schlein, Benjamin
    CORRELATED RANDOM SYSTEMS: FIVE DIFFERENT METHODS: CIRM JEAN-MORLET CHAIR, SPRING 2013, 2015, 2143 : 179 - 205
  • [50] Eigenvalues for the minors of Wigner matrices
    Huang, Jiaoyang
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (04): : 2201 - 2215