Volumetric Segmentation of the Corpus Callosum: Training a Deep Learning model on diffusion MRI

被引:1
|
作者
Rodrigues, Joany [1 ]
Pinheiro, Gustavo [1 ]
Carmo, Diedre [1 ]
Rittner, Leticia [1 ]
机构
[1] Univ Estadual Campinas, Sch Elect & Comp Engn FEEC, Med Image Comp Lab, Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Segmentation; corpus callosum; deep learning; U-Net; magnetic resonance; diffusion tensor imaging; ANATOMICAL STRUCTURES; ATROPHY;
D O I
10.1117/12.2606233
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Corpus callosum (CC) segmentation is an important first step of MRI-based analysis, however most available automated methods and tools perform its segmentation on the midsagittal slice only. Additionally, the few volumetric CC segmentation methods available work on T1-weighted images, what requires an additional step of registering the T1 segmentation mask over diffusion tensor images (DTI) when conducting any DTI-based analysis. This work presents a volumetric segmentation method of the corpus callosum using a modified U-Net on diffusion tensor data, such as Fractional Anisotropy (FA), Mean Difusivity (MD) and Mode of Anisotropy (MO). The model was trained on 70 DTI acquisitions and tested on a dataset composed of 14 acquisitions with manual volumetric segmentation. Results indicate that using multiple DTI maps as input channels is better than using a single one. The best model obtained a mean dice of 83,29% on the test dataset, surpassing the performance of available softwares.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Segmentation of corpus callosum using diffusion tensor imaging: validation in patients with glioblastoma
    Mohammad-Reza Nazem-Zadeh
    Sona Saksena
    Abbas Babajani-Fermi
    Quan Jiang
    Hamid Soltanian-Zadeh
    Mark Rosenblum
    Tom Mikkelsen
    Rajan Jain
    BMC Medical Imaging, 12
  • [22] DEEP LEARNING FOR VOLUMETRIC SEGMENTATION IN SPATIO-TEMPORAL DATA: APPLICATION TO SEGMENTATION OF PROSTATE IN DCE-MRI
    Kang, Jian
    Samarasinghe, Gihan
    Senanayake, Upul
    Conjeti, Sailesh
    Sowmya, Arcot
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 61 - 65
  • [23] Rate of Change in Diffusion Tensor MRI Parameters in the Corpus Callosum in Multiple Sclerosis
    Harrison, Daniel M.
    Reich, Daniel S.
    Ozturk, Arzu
    Calabresi, Peter A.
    NEUROLOGY, 2009, 72 (11) : A144 - A144
  • [24] Quantitative fetal MRI with diffusion tensor imaging in cases with 'short' corpus callosum
    Corroenne, R.
    Grevent, D.
    Mahallati, H.
    Millischer, A. -e.
    Gauchard, G.
    Bussieres, L.
    Kasprian, G.
    Ville, Y.
    Salomon, L. J.
    ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2024, 63 (03) : 385 - 391
  • [25] Diffusion tensor MRI of the corpus callosum and cognitive function in adults born preterm
    Kontis, Dimitris
    Catani, Marco
    Cuddy, Marion
    Walshe, Muriel
    Nosarti, Chiara
    Jones, Derek
    Wyatt, John
    Rifkin, Larry
    Murray, Robin
    Allin, Matthew
    NEUROREPORT, 2009, 20 (04) : 424 - 428
  • [26] Deep learning-based automatic segmentation of cerebral infarcts on diffusion MRI
    Wi-Sun Ryu
    Dawid Schellingerhout
    Jonghyeok Park
    Jinyong Chung
    Sang-Wuk Jeong
    Dong-Seok Gwak
    Beom Joon Kim
    Joon-Tae Kim
    Keun-Sik Hong
    Kyung Bok Lee
    Tai Hwan Park
    Sang-Soon Park
    Jong-Moo Park
    Kyusik Kang
    Yong-Jin Cho
    Hong-Kyun Park
    Byung-Chul Lee
    Kyung-Ho Yu
    Mi Sun Oh
    Soo Joo Lee
    Jae Guk Kim
    Jae-Kwan Cha
    Dae-Hyun Kim
    Jun Lee
    Man Seok Park
    Dongmin Kim
    Oh Young Bang
    Eung Yeop Kim
    Chul-Ho Sohn
    Hosung Kim
    Hee-Joon Bae
    Dong-Eog Kim
    Scientific Reports, 15 (1)
  • [27] Thalamus Segmentation Using Deep Learning with Diffusion MRI Data: An Open Benchmark
    Pinheiro, Gustavo Retuci
    Brusini, Lorenza
    Carmo, Diedre
    Proa, Renata
    Abreu, Thays
    Appenzeller, Simone
    Menegaz, Gloria
    Rittner, Leticia
    APPLIED SCIENCES-BASEL, 2023, 13 (09):
  • [28] MRI-Based Manual versus Automated Corpus Callosum Volumetric Measurements in Multiple Sclerosis
    Platten, Michael
    Martola, Juha
    Fink, Katharina
    Ouellette, Russell
    Piehl, Fredrik
    Granberg, Tobias
    JOURNAL OF NEUROIMAGING, 2020, 30 (02) : 198 - 204
  • [29] MRI-Defined Corpus Callosal Atrophy in Multiple Sclerosis: A Comparison of Volumetric Measurements, Corpus Callosum Area and Index
    Granberg, Tobias
    Bergendal, Gosta
    Shams, Sara
    Aspelin, Peter
    Kristoffersen-Wiberg, Maria
    Fredrikson, Sten
    Martola, Juha
    JOURNAL OF NEUROIMAGING, 2015, 25 (06) : 996 - 1001
  • [30] Unsupervised Method based on Probabilistic Neural Network for the Segmentation of Corpus Callosum in MRI Scans
    Jlassi, Amal
    ElBedoui, Khaoula
    Barhoumi, Walid
    Maktouf, Chokri
    VISAPP: PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 4, 2019, : 545 - 552