Thalamus Segmentation Using Deep Learning with Diffusion MRI Data: An Open Benchmark

被引:1
|
作者
Pinheiro, Gustavo Retuci [1 ]
Brusini, Lorenza [2 ]
Carmo, Diedre [1 ]
Proa, Renata [1 ,3 ]
Abreu, Thays [1 ]
Appenzeller, Simone [4 ]
Menegaz, Gloria [2 ]
Rittner, Leticia [1 ]
机构
[1] Univ Estadual Campinas, Sch Elect & Comp Engn, BR-13083852 Campinas, Brazil
[2] Univ Verona, Dept Comp Sci, I-37129 Verona, Italy
[3] Univ Sao Paulo, Inst Math & Stat, BR-14887900 Sao Paulo, Brazil
[4] Univ Estadual Campinas, Sch Med Sci, BR-13083887 Campinas, Brazil
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 09期
基金
巴西圣保罗研究基金会;
关键词
thalamus; segmentation; diffusion MRI; public dataset; deep learning; benchmark; IMAGE SEGMENTATION; VALIDATION; TENSOR; ALGORITHM; QUALITY; PROJECT;
D O I
10.3390/app13095284
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The thalamus is a subcortical brain structure linked to the motor system. Since certain changes within this structure are related to diseases, such as multiple sclerosis and Parkinson's, the characterization of the thalamus-e.g., shape assessment-is a crucial step in relevant studies and applications, including medical research and surgical planning. A robust and reliable thalamus-segmentation method is therefore, required to meet these demands. Despite presenting low contrast for this particular structure, T1-weighted imaging is still the most common MRI sequence for thalamus segmentation. However, diffusion MRI (dMRI) captures different micro-structural details of the biological tissue and reveals more contrast of the thalamic borders, thereby serving as a better candidate for thalamus-segmentation methods. Accordingly, we propose a baseline multimodality thalamus-segmentation pipeline that combines dMRI and T1-weighted images within a CNN approach, achieving state-of-the-art levels of Dice overlap. Furthermore, we are hosting an open benchmark with a large, preprocessed, publicly available dataset that includes co-registered, T1-weighted, dMRI, manual thalamic masks; masks generated by three distinct automated methods; and a STAPLE consensus of the masks. The dataset, code, environment, and instructions for the benchmark leaderboard can be found on our GitHub and CodaLab.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Deep learning based segmentation of brain tissue from diffusion MRI
    Zhang, Fan
    Breger, Anna
    Cho, Kang Ik Kevin
    Ning, Lipeng
    Westin, Carl-Fredrik
    O'Donnell, Lauren J.
    Pasternak, Ofer
    NEUROIMAGE, 2021, 233
  • [2] Tumor Segmentation in Breast MRI Using Deep Learning
    Matic, Zeljka
    Kadry, Seifedine
    2022 FIFTH INTERNATIONAL CONFERENCE OF WOMEN IN DATA SCIENCE AT PRINCE SULTAN UNIVERSITY (WIDS-PSU 2022), 2022, : 49 - 51
  • [3] Acute Infarct Segmentation on Diffusion-Weighted Imaging Using Deep Learning Algorithm and RAPID MRI
    Ryu, Wi-Sun
    Kang, You-Ri
    Noh, Yoon-Gon
    Park, Jong-Hyeok
    Kim, Dongmin
    Kim, Byeong C.
    Park, Man-Seok
    Kim, Beom Joon
    Kim, Joon-Tae
    JOURNAL OF STROKE, 2023, 25 (03) : 425 - +
  • [4] Deep learning-based automatic segmentation of cerebral infarcts on diffusion MRI
    Wi-Sun Ryu
    Dawid Schellingerhout
    Jonghyeok Park
    Jinyong Chung
    Sang-Wuk Jeong
    Dong-Seok Gwak
    Beom Joon Kim
    Joon-Tae Kim
    Keun-Sik Hong
    Kyung Bok Lee
    Tai Hwan Park
    Sang-Soon Park
    Jong-Moo Park
    Kyusik Kang
    Yong-Jin Cho
    Hong-Kyun Park
    Byung-Chul Lee
    Kyung-Ho Yu
    Mi Sun Oh
    Soo Joo Lee
    Jae Guk Kim
    Jae-Kwan Cha
    Dae-Hyun Kim
    Jun Lee
    Man Seok Park
    Dongmin Kim
    Oh Young Bang
    Eung Yeop Kim
    Chul-Ho Sohn
    Hosung Kim
    Hee-Joon Bae
    Dong-Eog Kim
    Scientific Reports, 15 (1)
  • [5] Volumetric Segmentation of the Corpus Callosum: Training a Deep Learning model on diffusion MRI
    Rodrigues, Joany
    Pinheiro, Gustavo
    Carmo, Diedre
    Rittner, Leticia
    17TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2021, 12088
  • [6] Temporomandibular joint segmentation in MRI images using deep learning
    Li, Mengxun
    Punithakumar, Kumaradevan
    Major, Paul W.
    Le, Lawrence H.
    Nguyen, Kim-Cuong T.
    Pacheco-Pereira, Camila
    Kaipatur, Neelambar R.
    Nebbe, Brian
    Jaremko, Jacob L.
    Almeida, Fabiana T.
    JOURNAL OF DENTISTRY, 2022, 127
  • [7] TBI LESION SEGMENTATION FROM MRI USING DEEP LEARNING
    Roy, Snehashis
    Butman, John
    Chan, Leighton
    Dzung Pham
    JOURNAL OF NEUROTRAUMA, 2018, 35 (16) : A152 - A152
  • [8] Brain Tumor Segmentation Using Deep Learning on MRI Images
    Mostafa, Almetwally M.
    Zakariah, Mohammed
    Aldakheel, Eman Abdullah
    DIAGNOSTICS, 2023, 13 (09)
  • [9] Automatic Segmentation of the Trigeminal Nerve on MRI Using Deep Learning
    Mulford, K.
    Ndoro, S.
    Moen, S.
    Watanabe, Y.
    van de Moortele, P. F.
    MEDICAL PHYSICS, 2020, 47 (06) : E584 - E584
  • [10] Deep learning for brain metastasis detection and segmentation in longitudinal MRI data
    Huang, Yixing
    Bert, Christoph
    Sommer, Philipp
    Frey, Benjamin
    Gaipl, Udo
    Distel, Luitpold, V
    Weissmann, Thomas
    Uder, Michael
    Schmidt, Manuel A.
    Dorfler, Arnd
    Maier, Andreas
    Fietkau, Rainer
    Putz, Florian
    MEDICAL PHYSICS, 2022, 49 (09) : 5773 - 5786