Volumetric Segmentation of the Corpus Callosum: Training a Deep Learning model on diffusion MRI

被引:1
|
作者
Rodrigues, Joany [1 ]
Pinheiro, Gustavo [1 ]
Carmo, Diedre [1 ]
Rittner, Leticia [1 ]
机构
[1] Univ Estadual Campinas, Sch Elect & Comp Engn FEEC, Med Image Comp Lab, Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Segmentation; corpus callosum; deep learning; U-Net; magnetic resonance; diffusion tensor imaging; ANATOMICAL STRUCTURES; ATROPHY;
D O I
10.1117/12.2606233
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Corpus callosum (CC) segmentation is an important first step of MRI-based analysis, however most available automated methods and tools perform its segmentation on the midsagittal slice only. Additionally, the few volumetric CC segmentation methods available work on T1-weighted images, what requires an additional step of registering the T1 segmentation mask over diffusion tensor images (DTI) when conducting any DTI-based analysis. This work presents a volumetric segmentation method of the corpus callosum using a modified U-Net on diffusion tensor data, such as Fractional Anisotropy (FA), Mean Difusivity (MD) and Mode of Anisotropy (MO). The model was trained on 70 DTI acquisitions and tested on a dataset composed of 14 acquisitions with manual volumetric segmentation. Results indicate that using multiple DTI maps as input channels is better than using a single one. The best model obtained a mean dice of 83,29% on the test dataset, surpassing the performance of available softwares.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Watershed-based segmentation of the corpus callosum in diffusion MRI
    Freitas, Pedro
    Rittner, Leticia
    Appenzeller, Simone
    Lapa, Aline
    Lotufo, Roberto
    MEDICAL IMAGING 2012: IMAGE PROCESSING, 2012, 8314
  • [2] Deep Learning Corpus Callosum Segmentation as a Neurodegenerative Marker in Multiple Sclerosis
    Platten, Michael
    Brusini, Irene
    Andersson, Olle
    Ouellette, Russell
    Piehl, Fredrik
    Wang, Chunliang
    Granberg, Tobias
    JOURNAL OF NEUROIMAGING, 2021, 31 (03) : 493 - 500
  • [3] Automatic deep learning multicontrast corpus callosum segmentation in multiple sclerosis
    Brusini, Irene
    Platten, Michael
    Ouellette, Russell
    Piehl, Fredrik
    Wang, Chunliang
    Granberg, Tobias
    JOURNAL OF NEUROIMAGING, 2022, 32 (03) : 459 - 470
  • [4] Automated quality check of corpus callosum segmentation using deep learning
    Herrera, William Javier
    Appenzeller, Simone
    Reis, Fabiano
    Pereira, Danilo Rodrigues
    Bento, Mariana Pinheiro
    Rittner, Leticia
    MEDICAL IMAGING 2022: IMAGE PROCESSING, 2022, 12032
  • [5] Pixel-Based Classification Method for Corpus Callosum Segmentation on Diffusion-MRI
    Herrera, William G.
    Cover, Giovana S.
    Rittner, Leticia
    VIPIMAGE 2017, 2018, 27 : 217 - 224
  • [6] Deep Learning-Based Corpus Callosum Segmentation from Brain Images: A Review
    Sarma, Padmanabha
    Saranya, G.
    WIRELESS PERSONAL COMMUNICATIONS, 2024, 138 (02) : 685 - 700
  • [7] Diffusion-weighted MRI study of corpus callosum in schizophrenia
    Brambilla, P
    Cerini, R
    Gasparini, A
    Andreone, N
    Barlocco, L
    Versace, A
    Nose, M
    Barbui, C
    David, AS
    Keshavan, MS
    Tansella, M
    INTERNATIONAL JOURNAL OF NEUROPSYCHOPHARMACOLOGY, 2004, 7 : S224 - S224
  • [8] Diffusion tensor MRI of the corpus callosum in amyotrophic lateral sclerosis
    Chapman, Molly C.
    Jelsone-Swain, Laura
    Johnson, Timothy D.
    Gruis, Kirsten L.
    Welsh, Robert C.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2014, 39 (03) : 641 - 647
  • [9] Computational methods for corpus callosum segmentation on MRI: A systematic literature review
    Cover, G. S.
    Herrera, W. G.
    Bento, M. P.
    Appenzeller, S.
    Rittner, L.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 154 : 25 - 35
  • [10] Analysis of Scalar Maps for the Segmentation of the Corpus Callosum in Diffusion Tensor Fields
    Rittner, Leticia
    Campbell, Jennifer S. W.
    Freitas, Pedro F.
    Appenzeller, Simone
    Pike, G. Bruce
    Lotufo, Roberto A.
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2013, 45 (03) : 214 - 226