Volumetric Segmentation of the Corpus Callosum: Training a Deep Learning model on diffusion MRI

被引:1
|
作者
Rodrigues, Joany [1 ]
Pinheiro, Gustavo [1 ]
Carmo, Diedre [1 ]
Rittner, Leticia [1 ]
机构
[1] Univ Estadual Campinas, Sch Elect & Comp Engn FEEC, Med Image Comp Lab, Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Segmentation; corpus callosum; deep learning; U-Net; magnetic resonance; diffusion tensor imaging; ANATOMICAL STRUCTURES; ATROPHY;
D O I
10.1117/12.2606233
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Corpus callosum (CC) segmentation is an important first step of MRI-based analysis, however most available automated methods and tools perform its segmentation on the midsagittal slice only. Additionally, the few volumetric CC segmentation methods available work on T1-weighted images, what requires an additional step of registering the T1 segmentation mask over diffusion tensor images (DTI) when conducting any DTI-based analysis. This work presents a volumetric segmentation method of the corpus callosum using a modified U-Net on diffusion tensor data, such as Fractional Anisotropy (FA), Mean Difusivity (MD) and Mode of Anisotropy (MO). The model was trained on 70 DTI acquisitions and tested on a dataset composed of 14 acquisitions with manual volumetric segmentation. Results indicate that using multiple DTI maps as input channels is better than using a single one. The best model obtained a mean dice of 83,29% on the test dataset, surpassing the performance of available softwares.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Editorial for "Fully Automated MRI Segmentation and Volumetric Measurement of Intracranial Meningioma Using Deep Learning"
    Akasaka, Thai
    Okada, Tomohisa
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 57 (03) : 882 - 883
  • [32] FB-ZWUNet: A deep learning network for corpus callosum segmentation in fetal brain ultrasound images for prenatal diagnostics
    Wang, Qifeng
    Zhao, Dan
    Ma, Hao
    Liu, Bin
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 104
  • [33] Marchiafava-Bignami disease:: Diffusion weighted MRI in corpus callosum and cortical lesions
    Ménégon, P
    Sibon, I
    Pachai, C
    Orgogozo, JM
    Dousset, V
    NEUROLOGY, 2005, 65 (03) : 475 - 477
  • [34] Deep Diffusion MRI Registration (DDMReg): A Deep Learning Method for Diffusion MRI Registration
    Zhang, Fan
    Wells, William M., III
    O'Donnell, Lauren J.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (06) : 1454 - 1467
  • [35] Automatic corpus callosum segmentation using a deformable active Fourier contour model
    Vachet, Clement
    Yvernault, Benjamin
    Bhatt, Kshamta
    Smith, Rachel G.
    Gerig, Guido
    Hazlett, Heather Cody
    Styner, Martin
    MEDICAL IMAGING 2012: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2012, 8317
  • [36] Segmentation of the Human Corpus Callosum Variability from T1 Weighted MRI of Brain
    Sadhu, Shayak
    Roy, Sudipta
    Sadhukhan, Siddharth
    Bandyopadhyay, S. K.
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION TECHNOLOGIES, IC3T 2015, VOL 1, 2016, 379 : 55 - 65
  • [37] Automated Meningioma Segmentation in Multiparametric MRI Comparable Effectiveness of a Deep Learning Model and Manual Segmentation
    Laukamp, Kai Roman
    Pennig, Lenhard
    Thiele, Frank
    Reimer, Robert
    Goertz, Lukas
    Shakirin, Georgy
    Zopfs, David
    Timmer, Marco
    Perkuhn, Michael
    Borggrefe, Jan
    CLINICAL NEURORADIOLOGY, 2021, 31 (02) : 357 - 366
  • [38] Can incomplete silver standard labels improve performance of DTI-based volumetric segmentation of the corpus callosum ?
    Rodrigues, Joany
    Carmo, Diedre
    Abreu, Thays
    Appenzeller, Simone
    Rittner, Leticia
    18TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2023, 12567
  • [39] Diffusion-weighted MRI study of corpus callosum in patients with schizophrenia.: Preliminary findings
    Brambilla, P
    Cerini, R
    Barbui, C
    Gasparini, A
    Nosè, M
    Versace, A
    Vittorini, E
    Andreone, N
    Gregis, M
    David, A
    Keshavan, MS
    Procacci, C
    Tansella, M
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2003, 13 : S440 - S441
  • [40] A pathologically validated deep learning model for laryngeal and hypopharyngeal tumour segmentation on MRI
    Kuijer, K.
    Smits, H.
    Doornaert, P.
    Niu, K.
    Savenije, M.
    Smid, E.
    Terhaard, C.
    Terpstra, M.
    de Ridder, M.
    Philippens, M.
    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2024, 54