Optomechanical tests of a Schrodinger-Newton equation for gravitational quantum mechanics

被引:21
|
作者
Gan, C. C. [1 ,2 ]
Savage, C. M. [1 ]
Scully, S. Z. [1 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Dept Quantum Sci, Canberra, ACT 0200, Australia
[2] Univ Malaya, Dept Phys, Kuala Lumpur 50603, Malaysia
基金
澳大利亚研究理事会;
关键词
GRAVITY; SEARCH;
D O I
10.1103/PhysRevD.93.124049
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that optomechanical systems can test the Schrodinger-Newton equation of gravitational quantum mechanics due to Yang et al. Phys. Rev. Lett. 110, 170401 (2013). This equation is motivated by semiclassical gravity, a widely used theory of interacting gravitational and quantum fields. From the many-body Schrodinger-Newton equation follows an approximate equation for the center-of-mass dynamics of macroscopic objects. This predicts a distinctive double-peaked signature in the output optical quadrature power spectral density of certain optomechanical systems. Since the Schrodinger-Newton equation lacks free parameters, these will allow its experimental confirmation or refutation.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Optomechanical test of the Schrodinger-Newton equation
    Grossardt, Andre
    Bateman, James
    Ulbricht, Hendrik
    Bassi, Angelo
    PHYSICAL REVIEW D, 2016, 93 (09)
  • [2] Stochastic modification of the Schrodinger-Newton equation
    Bera, Sayantani
    Mohan, Ravi
    Singh, Tejinder P.
    PHYSICAL REVIEW D, 2015, 92 (02)
  • [3] The Schrodinger-Newton equation as a possible generator of quantum state reduction
    van Wezel, Jasper
    van den Brink, Jeroen
    PHILOSOPHICAL MAGAZINE, 2008, 88 (11) : 1659 - 1671
  • [4] Relativistic effects on the Schrodinger-Newton equation
    Brizuela, David
    Duran-Cabaces, Albert
    PHYSICAL REVIEW D, 2022, 106 (12)
  • [5] The Schrodinger-Newton equation and its foundations
    Bahrami, Mohammad
    Grossardt, Andre
    Donadi, Sandro
    Bassi, Angelo
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [6] Stochastic extensions of the regularized Schrodinger-Newton equation
    Nimmrichter, Stefan
    Hornberger, Klaus
    PHYSICAL REVIEW D, 2015, 91 (02):
  • [7] A PRIORI ESTIMATES FOR A CRITICAL SCHRODINGER-NEWTON EQUATION
    Disconzi, Marcelo M.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, : 39 - 51
  • [8] Dichotomous concentrating solutions for a Schrodinger-Newton equation
    Ding, Hui-Sheng
    Hu, Mengmeng
    Li, Benniao
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (06)
  • [9] Schrodinger-Newton equation with a complex Newton constant and induced gravity
    Diosi, Lajos
    Papp, Tibor Norbert
    PHYSICS LETTERS A, 2009, 373 (36) : 3244 - 3247
  • [10] The ground state energy of the Schrodinger-Newton equation
    Tod, KP
    PHYSICS LETTERS A, 2001, 280 (04) : 173 - 176