GIGA-Lens : Fast Bayesian Inference for Strong Gravitational Lens Modeling

被引:22
|
作者
Gu, A. [1 ,2 ]
Huang, X. [3 ,4 ]
Sheu, W. [1 ,2 ]
Aldering, G. [4 ]
Bolton, A. S. [5 ]
Boone, K. [6 ]
Dey, A. [5 ]
Filipp, A. [7 ,8 ]
Jullo, E. [9 ]
Perlmutter, S. [1 ,4 ]
Rubin, D. [10 ]
Schlafly, E. F. [11 ]
Schlegel, D. J. [4 ]
Shu, Y. [8 ,12 ]
Suyu, S. H. [7 ,8 ,13 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[3] Univ San Francisco, Dept Phys & Astron, San Francisco, CA 94117 USA
[4] Lawrence Berkeley Natl Lab, Div Phys, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[5] NSFs Natl Opt Infrared Astron Res Lab, 950 N Cherry Ave, Tucson, AZ 85719 USA
[6] Univ Washington, DiRAC Inst, Dept Astron, 3910 15th Ave NE, Seattle, WA 98195 USA
[7] Tech Univ Munich, Phys Dept, James Franck Str 1, D-85748 Garching, Germany
[8] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85748 Garching, Germany
[9] Aix Marseille Univ, LAM, CNES, CNRS, Marseille, France
[10] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA
[11] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA
[12] Ruhr Univ Bochum, Fac Phys & Astron, German Ctr Cosmol Lensing, Astron Inst AIRUB, D-44780 Bochum, Germany
[13] Acad Sinica, Inst Astron & Astrophys ASIAA, 11F ASMAB,1 Sect 4,Roosevelt Rd, Taipei 10617, Taiwan
来源
ASTROPHYSICAL JOURNAL | 2022年 / 935卷 / 01期
关键词
HUBBLE-SPACE-TELESCOPE; DARK-MATTER; IA SUPERNOVAE; ACS SURVEY; GALAXY; SUBSTRUCTURE; PRECISION; REDSHIFT; CONSTANT; SYSTEM;
D O I
10.3847/1538-4357/ac6de4
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present GICA-Lens: a gradient-informed, GPU-accelerated Bayesian framework for modeling strong gravitational lensing systems, implemented in TensorFlow and JAX. The three components, optimization using multistart gradient descent, posterior covariance estimation with variational inference, and sampling via Hamiltonian Monte Carlo, all take advantage of gradient information through automatic differentiation and massive parallelization on graphics processing units (GPUs). We test our pipeline on a large set of simulated systems and demonstrate in detail its high level of performance. The average time to model a single system on four Nvidia A100 GPUs is 105 s. The robustness, speed, and scalability offered by this framework make it possible to model the large number of strong lenses found in current surveys and present a very promising prospect for the modeling of O(10(5)) lensing systems expected to be discovered in the era of the Vera C. Rubin Observatory, Euclid, and the Nancy Grace Roman Space Telescope.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] GIGA-Lens: Fast Bayesian Inference for Strong Gravitational Lens Modeling
    Gu, Andi
    Huang, Xiaosheng
    Sheu, W.
    Aldering, G.
    Bolton, A.S.
    Boone, K.
    Dey, A.
    Filipp, A.
    Jullo, E.
    Perlmutter, S.
    Rubin, D.
    Schlafly, E.F.
    Schlegel, D.J.
    Shu, Y.
    Suyu, S.H.
    arXiv, 2022,
  • [2] A compact group lens modeled with GIGA-Lens: Enhanced inference for complex systems
    Urcelay, F.
    Jullo, E.
    Barrientos, L. F.
    Huang, X.
    Hernandez, J.
    ASTRONOMY & ASTROPHYSICS, 2025, 694
  • [3] Strong gravitational lens inversion: a bayesian approach
    Brewer, BJ
    Lewis, GF
    ASTROPHYSICAL JOURNAL, 2006, 637 (02): : 608 - 619
  • [4] Trans-dimensional Bayesian inference for gravitational lens substructures
    Brewer, Brendon J.
    Huijser, David
    Lewis, Geraint F.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 455 (02) : 1819 - 1829
  • [5] A systematic review of strong gravitational lens modeling software
    Lefor, Alan T.
    Futamase, Toshifumi
    Akhlaghi, Mohammad
    NEW ASTRONOMY REVIEWS, 2013, 57 (1-2) : 1 - 13
  • [6] AutoML to Generalize Strong Gravitational Lens Modeling Problem
    Rezaei, Samira
    Baratchi, Mitra
    MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2023, PT III, 2025, 2135 : 511 - 518
  • [7] Large-scale Gravitational Lens Modeling with Bayesian Neural Networks for Accurate and Precise Inference of the Hubble Constant
    Park, Ji Won
    Wagner-Carena, Sebastian
    Birrer, Simon
    Marshall, Philip J.
    Lin, Joshua Yao-Yu
    Roodman, Aaron
    ASTROPHYSICAL JOURNAL, 2021, 910 (01):
  • [8] The strong gravitational lens finding challenge
    Metcalf, R. B.
    Meneghetti, M.
    Avestruz, C.
    Bellagamba, F.
    Bom, C. R.
    Bertin, E.
    Cabanac, R.
    Courbin, F.
    Davies, A.
    Decenciere, E.
    Flamary, R.
    Gavazzi, R.
    Geiger, M.
    Hartley, P.
    Huertas-Company, M.
    Jackson, N.
    Jacobs, C.
    Jullo, E.
    Kneib, J. -P.
    Koopmans, L. V. E.
    Lanusse, F.
    Li, C. -L.
    Ma, Q.
    Makler, M.
    Li, N.
    Lightman, M.
    Petrillo, C. E.
    Serjeant, S.
    Schafer, C.
    Sonnenfeld, A.
    Tagore, A.
    Tortora, C.
    Tuccillo, D.
    Valentin, M. B.
    Velasco-Forero, S.
    Kleijn, G. A. Verdoes
    Vernardos, G.
    ASTRONOMY & ASTROPHYSICS, 2019, 625
  • [9] The Milky Way Galaxy as a strong gravitational lens
    Shin, E. M.
    Evans, N. W.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2007, 374 (04) : 1427 - 1436
  • [10] STRONG GRAVITATIONAL LENS MODELING WITH SPATIALLY VARIANT POINT-SPREAD FUNCTIONS
    Rogers, Adam
    Fiege, Jason D.
    ASTROPHYSICAL JOURNAL, 2011, 743 (01):