GIGA-Lens : Fast Bayesian Inference for Strong Gravitational Lens Modeling

被引:22
|
作者
Gu, A. [1 ,2 ]
Huang, X. [3 ,4 ]
Sheu, W. [1 ,2 ]
Aldering, G. [4 ]
Bolton, A. S. [5 ]
Boone, K. [6 ]
Dey, A. [5 ]
Filipp, A. [7 ,8 ]
Jullo, E. [9 ]
Perlmutter, S. [1 ,4 ]
Rubin, D. [10 ]
Schlafly, E. F. [11 ]
Schlegel, D. J. [4 ]
Shu, Y. [8 ,12 ]
Suyu, S. H. [7 ,8 ,13 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[3] Univ San Francisco, Dept Phys & Astron, San Francisco, CA 94117 USA
[4] Lawrence Berkeley Natl Lab, Div Phys, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[5] NSFs Natl Opt Infrared Astron Res Lab, 950 N Cherry Ave, Tucson, AZ 85719 USA
[6] Univ Washington, DiRAC Inst, Dept Astron, 3910 15th Ave NE, Seattle, WA 98195 USA
[7] Tech Univ Munich, Phys Dept, James Franck Str 1, D-85748 Garching, Germany
[8] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85748 Garching, Germany
[9] Aix Marseille Univ, LAM, CNES, CNRS, Marseille, France
[10] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA
[11] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA
[12] Ruhr Univ Bochum, Fac Phys & Astron, German Ctr Cosmol Lensing, Astron Inst AIRUB, D-44780 Bochum, Germany
[13] Acad Sinica, Inst Astron & Astrophys ASIAA, 11F ASMAB,1 Sect 4,Roosevelt Rd, Taipei 10617, Taiwan
来源
ASTROPHYSICAL JOURNAL | 2022年 / 935卷 / 01期
关键词
HUBBLE-SPACE-TELESCOPE; DARK-MATTER; IA SUPERNOVAE; ACS SURVEY; GALAXY; SUBSTRUCTURE; PRECISION; REDSHIFT; CONSTANT; SYSTEM;
D O I
10.3847/1538-4357/ac6de4
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present GICA-Lens: a gradient-informed, GPU-accelerated Bayesian framework for modeling strong gravitational lensing systems, implemented in TensorFlow and JAX. The three components, optimization using multistart gradient descent, posterior covariance estimation with variational inference, and sampling via Hamiltonian Monte Carlo, all take advantage of gradient information through automatic differentiation and massive parallelization on graphics processing units (GPUs). We test our pipeline on a large set of simulated systems and demonstrate in detail its high level of performance. The average time to model a single system on four Nvidia A100 GPUs is 105 s. The robustness, speed, and scalability offered by this framework make it possible to model the large number of strong lenses found in current surveys and present a very promising prospect for the modeling of O(10(5)) lensing systems expected to be discovered in the era of the Vera C. Rubin Observatory, Euclid, and the Nancy Grace Roman Space Telescope.
引用
收藏
页数:17
相关论文
共 50 条
  • [22] Iterative solutions for the gravitational lens equation in the strong deflection limit
    Takizawa, Keita
    Asada, Hideki
    PHYSICAL REVIEW D, 2021, 103 (10)
  • [23] Deep convolutional neural networks as strong gravitational lens detectors
    Schaefer, C.
    Geiger, M.
    Kuntzer, T.
    Kneib, J. -P.
    ASTRONOMY & ASTROPHYSICS, 2018, 611
  • [24] A high-resolution cosmological simulation of a strong gravitational lens
    Richings, Jack
    Frenk, Carlos
    Jenkins, Adrian
    Robertson, Andrew
    Schaller, Matthieu
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 501 (03) : 4657 - 4668
  • [25] Bayesian approach to gravitational lens model selection: constraining H0 with a selected sample of strong lenses
    Balmes, I.
    Corasaniti, P. S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 431 (02) : 1528 - 1540
  • [26] Modeling the Double Source-Plane Gravitational Lens
    Tu, H.
    Gavazzi, R.
    Limousin, M.
    Cabanac, R.
    Marshall, P. J.
    Fort, B.
    Treu, T.
    Pello, R.
    Julio, E.
    Kneib, J. -P.
    Sygnet, J. -F.
    GALAXY EVOLUTION: INFRARED TO MILLIMETER WAVELENGTH PERSPECTIVE, 2011, 446 : 137 - +
  • [27] Hierarchical Inference with Bayesian Neural Networks: An Application to Strong Gravitational Lensing
    Wagner-Carena, Sebastian
    Park, Ji Won
    Birrer, Simon
    Marshall, Philip J.
    Roodman, Aaron
    Wechsler, Risa H.
    ASTROPHYSICAL JOURNAL, 2021, 909 (02):
  • [28] lemon: LEns MOdelling with Neural networks - I. Automated modelling of strong gravitational lenses with Bayesian Neural Networks
    Gentile, Fabrizio
    Tortora, Crescenzo
    Covone, Giovanni
    Koopmans, Leon V. E.
    Li, Rui
    Leuzzi, Laura
    Napolitano, Nicola R.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 522 (04) : 5442 - 5455
  • [29] The impact of <monospace>CLEAN</monospace>ing on strong gravitational lens modelling
    Maresca, Jacob
    Dye, Simon
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2025, 537 (03) : 2708 - 2725
  • [30] Adaptive semi-linear inversion of strong gravitational lens imaging
    Nightingale, J. W.
    Dye, S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 452 (03) : 2940 - 2959