GIGA-Lens : Fast Bayesian Inference for Strong Gravitational Lens Modeling

被引:22
|
作者
Gu, A. [1 ,2 ]
Huang, X. [3 ,4 ]
Sheu, W. [1 ,2 ]
Aldering, G. [4 ]
Bolton, A. S. [5 ]
Boone, K. [6 ]
Dey, A. [5 ]
Filipp, A. [7 ,8 ]
Jullo, E. [9 ]
Perlmutter, S. [1 ,4 ]
Rubin, D. [10 ]
Schlafly, E. F. [11 ]
Schlegel, D. J. [4 ]
Shu, Y. [8 ,12 ]
Suyu, S. H. [7 ,8 ,13 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[3] Univ San Francisco, Dept Phys & Astron, San Francisco, CA 94117 USA
[4] Lawrence Berkeley Natl Lab, Div Phys, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[5] NSFs Natl Opt Infrared Astron Res Lab, 950 N Cherry Ave, Tucson, AZ 85719 USA
[6] Univ Washington, DiRAC Inst, Dept Astron, 3910 15th Ave NE, Seattle, WA 98195 USA
[7] Tech Univ Munich, Phys Dept, James Franck Str 1, D-85748 Garching, Germany
[8] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85748 Garching, Germany
[9] Aix Marseille Univ, LAM, CNES, CNRS, Marseille, France
[10] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA
[11] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA
[12] Ruhr Univ Bochum, Fac Phys & Astron, German Ctr Cosmol Lensing, Astron Inst AIRUB, D-44780 Bochum, Germany
[13] Acad Sinica, Inst Astron & Astrophys ASIAA, 11F ASMAB,1 Sect 4,Roosevelt Rd, Taipei 10617, Taiwan
来源
ASTROPHYSICAL JOURNAL | 2022年 / 935卷 / 01期
关键词
HUBBLE-SPACE-TELESCOPE; DARK-MATTER; IA SUPERNOVAE; ACS SURVEY; GALAXY; SUBSTRUCTURE; PRECISION; REDSHIFT; CONSTANT; SYSTEM;
D O I
10.3847/1538-4357/ac6de4
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present GICA-Lens: a gradient-informed, GPU-accelerated Bayesian framework for modeling strong gravitational lensing systems, implemented in TensorFlow and JAX. The three components, optimization using multistart gradient descent, posterior covariance estimation with variational inference, and sampling via Hamiltonian Monte Carlo, all take advantage of gradient information through automatic differentiation and massive parallelization on graphics processing units (GPUs). We test our pipeline on a large set of simulated systems and demonstrate in detail its high level of performance. The average time to model a single system on four Nvidia A100 GPUs is 105 s. The robustness, speed, and scalability offered by this framework make it possible to model the large number of strong lenses found in current surveys and present a very promising prospect for the modeling of O(10(5)) lensing systems expected to be discovered in the era of the Vera C. Rubin Observatory, Euclid, and the Nancy Grace Roman Space Telescope.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Fast Bayesian inference for modeling multivariate crash counts
    Serhiyenko, Volodymyr
    Mamun, Sha A.
    Ivan, John N.
    Ravishanker, Nalini
    ANALYTIC METHODS IN ACCIDENT RESEARCH, 2016, 9 : 44 - 53
  • [42] Revisiting the effect of lens mass models in cosmological applications of strong gravitational lensing
    Harvey-Hawes, Christopher
    Wiltshire, David L.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 534 (04) : 3364 - 3376
  • [43] The influence of the matter along the line of sight and in the lens environment on the strong gravitational lensing
    Jaroszynski, M.
    Kostrzewa-Rutkowska, Z.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 439 (03) : 2432 - 2441
  • [44] Auto-identification of unphysical source reconstructions in strong gravitational lens modelling
    Maresca, Jacob
    Dye, Simon
    Li, Nan
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 503 (02) : 2229 - 2241
  • [45] Cosmological parameter determination in free-form strong gravitational lens modelling
    Lubini, M.
    Sereno, M.
    Coles, J.
    Jetzer, Ph
    Saha, P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 437 (03) : 2461 - 2470
  • [46] A Bayesian approach to strong lens finding in the era of wide-area surveys
    Holloway, Philip
    Marshall, Philip J.
    Verma, Aprajita
    More, Anupreeta
    Canameras, Raoul
    Jaelani, Anton T.
    Ishida, Yuichiro
    Wong, Kenneth C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 530 (02) : 1297 - 1310
  • [47] Fast and accurate Bayesian polygenic risk modeling with variational inference
    Zabad, Shadi
    Gravel, Simon
    Li, Yue
    AMERICAN JOURNAL OF HUMAN GENETICS, 2023, 110 (05) : 741 - 761
  • [48] Quantifying Environmental and Line-of-sight Effects in Models of Strong Gravitational Lens Systems
    McCully, Curtis
    Keeton, Charles R.
    Wong, Kenneth C.
    Zabludoff, Ann I.
    ASTROPHYSICAL JOURNAL, 2017, 836 (01):
  • [49] Gravitational Lensing in Presence of Plasma: Strong Lens Systems, Black Hole Lensing and Shadow
    Bisnovatyi-Kogan, Gennady S.
    Tsupko, Oleg Yu.
    UNIVERSE, 2017, 3 (03)
  • [50] TEGLIE: Transformer encoders as strong gravitational lens finders in KiDS From simulations to surveys
    Grespan, M.
    Thuruthipilly, H.
    Pollo, A.
    Lochner, M.
    Biesiada, M.
    Etsebeth, V.
    ASTRONOMY & ASTROPHYSICS, 2024, 688