Strong gravitational lens inversion: a bayesian approach

被引:34
|
作者
Brewer, BJ [1 ]
Lewis, GF [1 ]
机构
[1] Univ Sydney, Astron Inst, Sch Phys, Sydney, NSW 2006, Australia
来源
ASTROPHYSICAL JOURNAL | 2006年 / 637卷 / 02期
关键词
gravitational lensing; methods : data analysis; methods : statistical;
D O I
10.1086/498409
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
If an extended source, such as a galaxy, is gravitationally lensed by a massive object in the foreground, the lensing distorts the observed image. It is straightforward to simulate what the observed image would be for a particular lens and source combination. In practice, one observes the lensed image on the sky, albeit blurred by atmospheric and telescopic effects and also contaminated with noise. The question that then arises is, given this incomplete data, what combinations of lens mass distribution and source surface brightness profile could plausibly have produced this image? This is a classic example of an inverse problem, and the method for solving it is given by the framework of Bayesian inference. In this paper we demonstrate the application of Bayesian inference to the problem of gravitational lens reconstruction and illustrate the use of Markov Chain Monte Carlo simulations, which can be used when the analytical calculations become too difficult. Previous methods for performing gravitational lens inversion are seen in a new light, as special cases of the general approach presented in this paper. Thus, we are able to answer, at least in principle, lingering questions about the uncertainties in the reconstructed source and lens parameters, taking into account all of the data and any prior information we may have.
引用
收藏
页码:608 / 619
页数:12
相关论文
共 50 条
  • [1] GIGA-Lens: Fast Bayesian Inference for Strong Gravitational Lens Modeling
    Gu, Andi
    Huang, Xiaosheng
    Sheu, W.
    Aldering, G.
    Bolton, A.S.
    Boone, K.
    Dey, A.
    Filipp, A.
    Jullo, E.
    Perlmutter, S.
    Rubin, D.
    Schlafly, E.F.
    Schlegel, D.J.
    Shu, Y.
    Suyu, S.H.
    arXiv, 2022,
  • [2] GIGA-Lens : Fast Bayesian Inference for Strong Gravitational Lens Modeling
    Gu, A.
    Huang, X.
    Sheu, W.
    Aldering, G.
    Bolton, A. S.
    Boone, K.
    Dey, A.
    Filipp, A.
    Jullo, E.
    Perlmutter, S.
    Rubin, D.
    Schlafly, E. F.
    Schlegel, D. J.
    Shu, Y.
    Suyu, S. H.
    ASTROPHYSICAL JOURNAL, 2022, 935 (01):
  • [3] Adaptive semi-linear inversion of strong gravitational lens imaging
    Nightingale, J. W.
    Dye, S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 452 (03) : 2940 - 2959
  • [4] Semilinear gravitational lens inversion
    Warren, SJ
    Dye, S
    ASTROPHYSICAL JOURNAL, 2003, 590 (02): : 673 - 682
  • [5] Bayesian approach to gravitational lens model selection: constraining H0 with a selected sample of strong lenses
    Balmes, I.
    Corasaniti, P. S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 431 (02) : 1528 - 1540
  • [6] The strong gravitational lens finding challenge
    Metcalf, R. B.
    Meneghetti, M.
    Avestruz, C.
    Bellagamba, F.
    Bom, C. R.
    Bertin, E.
    Cabanac, R.
    Courbin, F.
    Davies, A.
    Decenciere, E.
    Flamary, R.
    Gavazzi, R.
    Geiger, M.
    Hartley, P.
    Huertas-Company, M.
    Jackson, N.
    Jacobs, C.
    Jullo, E.
    Kneib, J. -P.
    Koopmans, L. V. E.
    Lanusse, F.
    Li, C. -L.
    Ma, Q.
    Makler, M.
    Li, N.
    Lightman, M.
    Petrillo, C. E.
    Serjeant, S.
    Schafer, C.
    Sonnenfeld, A.
    Tagore, A.
    Tortora, C.
    Tuccillo, D.
    Valentin, M. B.
    Velasco-Forero, S.
    Kleijn, G. A. Verdoes
    Vernardos, G.
    ASTRONOMY & ASTROPHYSICS, 2019, 625
  • [7] Bayesian strong gravitational-lens modelling on adaptive grids: objective detection of mass substructure in Galaxies
    Vegetti, S.
    Koopmans, L. V. E.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 392 (03) : 945 - 963
  • [8] The Milky Way Galaxy as a strong gravitational lens
    Shin, E. M.
    Evans, N. W.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2007, 374 (04) : 1427 - 1436
  • [9] A Bayesian approach to strong lens finding in the era of wide-area surveys
    Holloway, Philip
    Marshall, Philip J.
    Verma, Aprajita
    More, Anupreeta
    Canameras, Raoul
    Jaelani, Anton T.
    Ishida, Yuichiro
    Wong, Kenneth C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 530 (02) : 1297 - 1310
  • [10] A systematic review of strong gravitational lens modeling software
    Lefor, Alan T.
    Futamase, Toshifumi
    Akhlaghi, Mohammad
    NEW ASTRONOMY REVIEWS, 2013, 57 (1-2) : 1 - 13