The Schrodinger equations generated by q-Bessel operator in quantum calculus

被引:0
|
作者
Shaimardan, S. [1 ]
Tokmagambetov, N. S. [1 ,2 ]
机构
[1] LN Gumilyev Eurasian Natl Univ, Nur Sultan, Kazakhstan
[2] Karagandy Univ, Karaganda, Kazakhstan
来源
关键词
q-integral; q-Jackson integral; q-difference operator q-derivative; the q-Bessel Fourier transform; the Sobolev type space; the Schrodinger equation; q-Bessel operator; FRACTIONAL Q-INTEGRALS;
D O I
10.31489/2022M1/102-108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain exact solutions of a new modification of the Schrodinger equation related to the Bessel q-operator. The theorem is proved on the existence of this solution in the Sobolev-type space W-q(2)(R-q(+)) in the q-calculus. The results on correctness in the corresponding spaces of the Sobolev-type are obtained. For simplicity, we give results involving fractional q-difference equations of real order a > 0 and given real numbers in q-calculus. Numerical treatment of fractional q-difference equations is also investigated. The obtained results can be used in this field and be supplement for studies in this field.
引用
收藏
页码:102 / 108
页数:7
相关论文
共 50 条
  • [41] A few properties of the third Jackson q-Bessel function
    Cardoso, J. L.
    ANALYSIS MATHEMATICA, 2016, 42 (04) : 323 - 337
  • [42] BOUNDS FOR RADII OF CONVEXITY OF SOME q-BESSEL FUNCTIONS
    Aktas, Ibrahim
    Orhan, Halit
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (02) : 355 - 369
  • [43] Sampling theorems associated with biorthogonal q-Bessel functions
    Annaby, M. H.
    Mansour, Z. S.
    Ashour, O. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (29)
  • [44] Gain Equalizer Approximation by using q-Bessel Polynomials
    Chutchavong, Vanvisa
    Janchitrapongvej, Kanok
    PROCEEDINGS OF THE 20TH ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS (APCC2014), 2014, : 356 - 359
  • [45] Bounds for Radii of Starlikeness of Some q-Bessel Functions
    Aktas, Ibrahim
    Baricz, Arpad
    RESULTS IN MATHEMATICS, 2017, 72 (1-2) : 947 - 963
  • [46] Radii of starlikeness and convexity of some q-Bessel functions
    Baricz, Arpad
    Dimitrov, Dimitar K.
    Mezo, Istvan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 435 (01) : 968 - 985
  • [47] Deformed algebras, q-hermite polynomials and q-Bessel functions
    Srinivasan, V
    Chaturvedi, S
    FRONTIERS OF FUNDAMENTAL PHYSICS 4, 2001, : 217 - 221
  • [48] On Some q-Bessel Type Continuous Wavelet Transform
    Ben Mabrouk, Anouar
    Rezgui, Imen
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42 : 15 - 19
  • [49] Starlikeness and Convexity Properties of the Big q-Bessel Functions
    Toklu, Evrim
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2025, 51 (01)
  • [50] Steep polyominoes, q-Motzkin numbers and q-Bessel functions
    Barcucci, E
    Del Lungo, A
    Fedou, JM
    Pinzani, R
    DISCRETE MATHEMATICS, 1998, 189 (1-3) : 21 - 42