Sampling theorems associated with biorthogonal q-Bessel functions

被引:8
|
作者
Annaby, M. H. [1 ]
Mansour, Z. S. [2 ]
Ashour, O. A. [3 ]
机构
[1] Qatar Univ, Dept Math Stat & Phys, Doha, Qatar
[2] King Saudi Univ, Dept Math, Fac Sci, Riyadh 11451, Saudi Arabia
[3] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt
关键词
TRANSFORM; SERIES; ANALOG; ZEROS;
D O I
10.1088/1751-8113/43/29/295204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper deals with the derivation of sampling theorems associated with q-biorthogonal systems. We derive interpolation expansions for q-Hankel transforms whose kernels are the second-type q-Bessel functions J(nu)((2))(z; q), nu > 0, 0 < q < 1. We investigate the eigenvalue problem whose solutions are the q-Bessel functions as well as its adjoint. Special cases and applications involving the associated q-sine function are given. The results are based on the conjecture that a family of q-Bessel functions of the second kind is a Riesz basis. Clues are given to support our claim.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] GENERALIZED Q-BESSEL FUNCTIONS
    FLOREANINI, R
    VINET, L
    CANADIAN JOURNAL OF PHYSICS, 1994, 72 (7-8) : 345 - 354
  • [2] The monotony of the q-Bessel functions
    Ozkan, Yucel
    Korkmaz, Semra
    Deniz, Erhan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 549 (01)
  • [3] ADDITION FORMULAS FOR Q-BESSEL FUNCTIONS
    FLOREANINI, R
    VINET, L
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (09) : 2984 - 2988
  • [4] About Jackson q-Bessel functions
    Zhang, CG
    JOURNAL OF APPROXIMATION THEORY, 2003, 122 (02) : 208 - 223
  • [5] Modified q-Bessel functions and q-Macdonald functions
    Olshanetskii, MA
    Rogov, VBK
    SBORNIK MATHEMATICS, 1996, 187 (9-10) : 1525 - 1544
  • [7] Inclusion relations of q-Bessel functions associated with generalized conic domain
    Khan, Shahid
    Hussain, Saqib
    Darus, Maslina
    AIMS MATHEMATICS, 2021, 6 (04): : 3624 - 3640
  • [8] Starlikeness of New General Differential Operators Associated with q-Bessel Functions
    Andrei, Loriana
    Caus, Vasile-Aurel
    SYMMETRY-BASEL, 2021, 13 (12):
  • [9] ON PARTIAL SUMS OF NORMALIZED q-BESSEL FUNCTIONS
    Artas, Ibrahim
    Orhan, Halit
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (02): : 535 - 547
  • [10] A NOTE ON THE ORTHOGONALITY OF JACKSON Q-BESSEL FUNCTIONS
    RAHMAN, M
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1989, 32 (03): : 369 - 376