The Schrodinger equations generated by q-Bessel operator in quantum calculus

被引:0
|
作者
Shaimardan, S. [1 ]
Tokmagambetov, N. S. [1 ,2 ]
机构
[1] LN Gumilyev Eurasian Natl Univ, Nur Sultan, Kazakhstan
[2] Karagandy Univ, Karaganda, Kazakhstan
来源
关键词
q-integral; q-Jackson integral; q-difference operator q-derivative; the q-Bessel Fourier transform; the Sobolev type space; the Schrodinger equation; q-Bessel operator; FRACTIONAL Q-INTEGRALS;
D O I
10.31489/2022M1/102-108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain exact solutions of a new modification of the Schrodinger equation related to the Bessel q-operator. The theorem is proved on the existence of this solution in the Sobolev-type space W-q(2)(R-q(+)) in the q-calculus. The results on correctness in the corresponding spaces of the Sobolev-type are obtained. For simplicity, we give results involving fractional q-difference equations of real order a > 0 and given real numbers in q-calculus. Numerical treatment of fractional q-difference equations is also investigated. The obtained results can be used in this field and be supplement for studies in this field.
引用
收藏
页码:102 / 108
页数:7
相关论文
共 50 条
  • [21] Uncertainty principles for the q-bessel fourier transform
    Nefzi, Bochra
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2019, 30 (11) : 920 - 939
  • [22] An Introductory Overview of Bessel Polynomials, the Generalized Bessel Polynomials and the q-Bessel Polynomials
    Srivastava, Hari Mohan
    SYMMETRY-BASEL, 2023, 15 (04):
  • [23] A determinant approach to q-Bessel polynomials and applications
    Riyasat, Mumtaz
    Khan, Subuhi
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1571 - 1583
  • [24] Product formula for the generalized q-Bessel function
    Ben Said, Meryam
    El Kamel, Jamel
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2016, 22 (11) : 1663 - 1672
  • [25] Generalized q-Bessel function and its properties
    Mansour Mahmoud
    Advances in Difference Equations, 2013
  • [26] A fractional q-integral operator associated with a certain class of q-Bessel functions and q-generating series
    Al-Omari, Shrideh
    Suthar, Dayalal
    Araci, Serkan
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [27] ON PARTIAL SUMS OF NORMALIZED q-BESSEL FUNCTIONS
    Artas, Ibrahim
    Orhan, Halit
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (02): : 535 - 547
  • [28] A NOTE ON THE ORTHOGONALITY OF JACKSON Q-BESSEL FUNCTIONS
    RAHMAN, M
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1989, 32 (03): : 369 - 376
  • [29] On the Zeros of the Big q-Bessel Functions and Applications
    Bouzeffour, Fethi
    Ben Mansour, Hanene
    Garayev, Mubariz
    MATHEMATICS, 2020, 8 (02)
  • [30] A determinant approach to q-Bessel polynomials and applications
    Mumtaz Riyasat
    Subuhi Khan
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1571 - 1583