The Schrodinger equations generated by q-Bessel operator in quantum calculus

被引:0
|
作者
Shaimardan, S. [1 ]
Tokmagambetov, N. S. [1 ,2 ]
机构
[1] LN Gumilyev Eurasian Natl Univ, Nur Sultan, Kazakhstan
[2] Karagandy Univ, Karaganda, Kazakhstan
来源
关键词
q-integral; q-Jackson integral; q-difference operator q-derivative; the q-Bessel Fourier transform; the Sobolev type space; the Schrodinger equation; q-Bessel operator; FRACTIONAL Q-INTEGRALS;
D O I
10.31489/2022M1/102-108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain exact solutions of a new modification of the Schrodinger equation related to the Bessel q-operator. The theorem is proved on the existence of this solution in the Sobolev-type space W-q(2)(R-q(+)) in the q-calculus. The results on correctness in the corresponding spaces of the Sobolev-type are obtained. For simplicity, we give results involving fractional q-difference equations of real order a > 0 and given real numbers in q-calculus. Numerical treatment of fractional q-difference equations is also investigated. The obtained results can be used in this field and be supplement for studies in this field.
引用
收藏
页码:102 / 108
页数:7
相关论文
共 50 条
  • [1] GENERALIZED q-BESSEL OPERATOR
    Dhaouadi, Lazhar
    Hleili, Manel
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 7 (01): : 20 - 37
  • [2] The Continuous Wavelet Transform for a q-Bessel Type Operator
    Pandey, C. P.
    Saikia, Jyoti
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2022, 20
  • [3] HARMONIC ANALYSIS ASSOCIATED WITH THE GENERALIZED q-BESSEL OPERATOR
    Abouelaz, Ahmed
    Daher, Radouan
    Loualid, El Mehdi
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2016, 10 (01): : 17 - 23
  • [4] SPECTRAL ZETA-FUNCTIONS FOR Q-BESSEL EQUATIONS
    KVITSINSKY, AA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (06): : 1753 - 1764
  • [5] The Continuous Generalized Wavelet Transform Associated with q-Bessel Operator
    Dixit, M. M.
    Pandey, C. P.
    Das, D.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41
  • [6] Generalized q-Bernoulli Polynomials Generated by Jackson q-Bessel Functions
    S. Z. H. Eweis
    Z. S. I. Mansour
    Results in Mathematics, 2022, 77
  • [7] Generalized q-Bernoulli Polynomials Generated by Jackson q-Bessel Functions
    Eweis, S. Z. H.
    Mansour, Z. S., I
    RESULTS IN MATHEMATICS, 2022, 77 (03)
  • [8] GENERALIZED Q-BESSEL FUNCTIONS
    FLOREANINI, R
    VINET, L
    CANADIAN JOURNAL OF PHYSICS, 1994, 72 (7-8) : 345 - 354
  • [9] On the zeros of a q-Bessel function
    Hayman, WK
    Complex Analysis and Dynamical Systems II, 2005, 382 : 205 - 216
  • [10] The monotony of the q-Bessel functions
    Ozkan, Yucel
    Korkmaz, Semra
    Deniz, Erhan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 549 (01)