Generalized q-Bernoulli Polynomials Generated by Jackson q-Bessel Functions

被引:0
|
作者
S. Z. H. Eweis
Z. S. I. Mansour
机构
[1] Beni-Suef University,Department of Mathematics and Computer Science, Faculty of Science
[2] Cairo University,Department of Mathematics, Faculty of Science
来源
Results in Mathematics | 2022年 / 77卷
关键词
-Bessel functions; -Bernoulli polynomials and numbers; asymptotic expansions; Cauchy residue theorem; 05A30; 11B68; 30E15; 32A27;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce the polynomials Bn,α(k)(x;q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^{(k)}_{n,\alpha }(x;q)$$\end{document} generated by a function including Jackson q-Bessel functions Jα(k)(x;q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J^{(k)}_{\alpha }(x;q)$$\end{document}(k=1,2,3),α>-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (k=1,2,3),\,\alpha >-1$$\end{document}. The cases α=±12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =\pm \frac{1}{2}$$\end{document} are the q-analogs of Bernoulli and Euler,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{,}$$\end{document}s polynomials introduced by Ismail and Mansour for (k=1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k=1,2)$$\end{document}, Mansour and Al-Towalib for (k=3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k=3)$$\end{document}. We study the main properties of these polynomials, their large n degree asymptotics and give their connection coefficients with the q-Laguerre polynomials and little q-Legendre polynomials.
引用
收藏
相关论文
共 50 条
  • [1] Generalized q-Bernoulli Polynomials Generated by Jackson q-Bessel Functions
    Eweis, S. Z. H.
    Mansour, Z. S., I
    RESULTS IN MATHEMATICS, 2022, 77 (03)
  • [2] GENERALIZED Q-BESSEL FUNCTIONS
    FLOREANINI, R
    VINET, L
    CANADIAN JOURNAL OF PHYSICS, 1994, 72 (7-8) : 345 - 354
  • [3] About Jackson q-Bessel functions
    Zhang, CG
    JOURNAL OF APPROXIMATION THEORY, 2003, 122 (02) : 208 - 223
  • [4] Congruences for generalized q-Bernoulli polynomials
    Cenkci, Mehmet
    Kurt, Veli
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2008, 2008 (1)
  • [5] A Note on Symmetric Properties of the Twisted q-Bernoulli Polynomials and the Twisted Generalized q-Bernoulli Polynomials
    Jang, L. -C.
    Yi, H.
    Shivashankara, K.
    Kim, T.
    Kim, Y. H.
    Lee, B.
    ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [6] q-Bernoulli numbers and q-Bernoulli polynomials revisited
    Ryoo, Cheon Seoung
    Kim, Taekyun
    Lee, Byungje
    ADVANCES IN DIFFERENCE EQUATIONS, 2011,
  • [7] An Introductory Overview of Bessel Polynomials, the Generalized Bessel Polynomials and the q-Bessel Polynomials
    Srivastava, Hari Mohan
    SYMMETRY-BASEL, 2023, 15 (04):
  • [8] q-Bernoulli numbers and q-Bernoulli polynomials revisited
    Cheon Seoung Ryoo
    Taekyun Kim
    Byungje Lee
    Advances in Difference Equations, 2011
  • [9] A NOTE ON THE ORTHOGONALITY OF JACKSON Q-BESSEL FUNCTIONS
    RAHMAN, M
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1989, 32 (03): : 369 - 376
  • [10] On a class of generalized q-Bernoulli and q-Euler polynomials
    Nazim I Mahmudov
    M Eini Keleshteri
    Advances in Difference Equations, 2013