Generalized q-Bernoulli Polynomials Generated by Jackson q-Bessel Functions

被引:0
|
作者
S. Z. H. Eweis
Z. S. I. Mansour
机构
[1] Beni-Suef University,Department of Mathematics and Computer Science, Faculty of Science
[2] Cairo University,Department of Mathematics, Faculty of Science
来源
Results in Mathematics | 2022年 / 77卷
关键词
-Bessel functions; -Bernoulli polynomials and numbers; asymptotic expansions; Cauchy residue theorem; 05A30; 11B68; 30E15; 32A27;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce the polynomials Bn,α(k)(x;q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^{(k)}_{n,\alpha }(x;q)$$\end{document} generated by a function including Jackson q-Bessel functions Jα(k)(x;q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J^{(k)}_{\alpha }(x;q)$$\end{document}(k=1,2,3),α>-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (k=1,2,3),\,\alpha >-1$$\end{document}. The cases α=±12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =\pm \frac{1}{2}$$\end{document} are the q-analogs of Bernoulli and Euler,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{,}$$\end{document}s polynomials introduced by Ismail and Mansour for (k=1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k=1,2)$$\end{document}, Mansour and Al-Towalib for (k=3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k=3)$$\end{document}. We study the main properties of these polynomials, their large n degree asymptotics and give their connection coefficients with the q-Laguerre polynomials and little q-Legendre polynomials.
引用
收藏
相关论文
共 50 条
  • [31] q-Bernoulli polynomials and q-umbral calculus
    KIM Dae San
    KIM Tae Kyun
    ScienceChina(Mathematics), 2014, 57 (09) : 1867 - 1874
  • [32] The monotony of the q-Bessel functions
    Ozkan, Yucel
    Korkmaz, Semra
    Deniz, Erhan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 549 (01)
  • [33] On the q-Bernoulli Numbers and Polynomials with Weight α
    Kim, T.
    Choi, J.
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [34] On a class of q-Bernoulli and q-Euler polynomials
    Mahmudov, Nazim I.
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [35] q-Bernoulli polynomials and q-umbral calculus
    Dae San Kim
    Tae Kyun Kim
    Science China Mathematics, 2014, 57 : 1867 - 1874
  • [36] A new construction on the q-Bernoulli polynomials
    Rim, Seog-Hoon
    Bayad, Abdelmejid
    Moon, Eun-Jung
    Jin, Joung-Hee
    Lee, Sun-Jung
    ADVANCES IN DIFFERENCE EQUATIONS, 2011,
  • [37] STRUCTURE OF THE ZEROS OF q-BERNOULLI POLYNOMIALS
    Ryoo, C. S.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2005, 17 (1-2) : 49 - 58
  • [38] Identities of symmetry for q-Bernoulli polynomials
    Kim, Dae San
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (08) : 2350 - 2359
  • [39] A new construction on the q-Bernoulli polynomials
    Seog-Hoon Rim
    Abdelmejid Bayad
    Eun-Jung Moon
    Joung-Hee Jin
    Sun-Jung Lee
    Advances in Difference Equations, 2011
  • [40] Carlitz's q-Bernoulli and q-Euler numbers and polynomials and a class of generalized q-Hurwitz zeta functions
    Choi, Junesang
    Anderson, P. J.
    Srivastava, H. M.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (03) : 1185 - 1208