Generalized q-Bernoulli Polynomials Generated by Jackson q-Bessel Functions

被引:0
|
作者
S. Z. H. Eweis
Z. S. I. Mansour
机构
[1] Beni-Suef University,Department of Mathematics and Computer Science, Faculty of Science
[2] Cairo University,Department of Mathematics, Faculty of Science
来源
Results in Mathematics | 2022年 / 77卷
关键词
-Bessel functions; -Bernoulli polynomials and numbers; asymptotic expansions; Cauchy residue theorem; 05A30; 11B68; 30E15; 32A27;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce the polynomials Bn,α(k)(x;q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^{(k)}_{n,\alpha }(x;q)$$\end{document} generated by a function including Jackson q-Bessel functions Jα(k)(x;q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J^{(k)}_{\alpha }(x;q)$$\end{document}(k=1,2,3),α>-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (k=1,2,3),\,\alpha >-1$$\end{document}. The cases α=±12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =\pm \frac{1}{2}$$\end{document} are the q-analogs of Bernoulli and Euler,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{,}$$\end{document}s polynomials introduced by Ismail and Mansour for (k=1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k=1,2)$$\end{document}, Mansour and Al-Towalib for (k=3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k=3)$$\end{document}. We study the main properties of these polynomials, their large n degree asymptotics and give their connection coefficients with the q-Laguerre polynomials and little q-Legendre polynomials.
引用
收藏
相关论文
共 50 条