Parameter identification of induction motor based on particle swarm optimization

被引:12
|
作者
Picardi, C. [1 ]
Rogano, N. [1 ]
机构
[1] Univ Calabria, Via Pietro Bucci 42C, I-87036 Arcavacata Di Rende, Italy
关键词
induction motors; parameter identification; genetic algorithm; optimization methods;
D O I
10.1109/SPEEDAM.2006.1649908
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper deals with the application of the particle swarm optimization (PSO) to the parameter identification of the induction motor. A suitable model of the motor with a specific parameter vector, including electromagnetic and mechanical parameters, is given. The simulation results, presented in the paper, mainly have the purpose to compare the PSO, the genetic algorithm (GA) and a modified PSO with a function "stretching" (SPSO) in terms of the behaviours of the best fitness and the average fitness versus the number of evaluations and of the reconstruction of the output variables by means of the identified parameters.
引用
收藏
页码:968 / +
页数:2
相关论文
共 50 条
  • [31] Parameter Identification of Thermoeletric Modules using Particle Swarm Optimization
    Ojeda G, Daniel R.
    de Almeida, Luiz A. L.
    Vilcanqui, Omar A. C.
    2015 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2015, : 812 - 817
  • [32] A Fast Induction Motor Speed Estimation based on Hybrid Particle Swarm Optimization (HPSO)
    Aryza, Solly
    Abdallah, Ahmed N.
    bin Khalidin, Zulkeflee
    Lubis, Zulkarnain
    Jie, Ma
    INTERNATIONAL CONFERENCE ON SOLID STATE DEVICES AND MATERIALS SCIENCE, 2012, 25 : 2109 - 2115
  • [33] Parameter Identification of Hysteresis Model with Improved Particle Swarm Optimization
    Ye, Meiying
    Wang, Xiaodong
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 415 - +
  • [34] Solving Parameter Identification Problem by Hybrid Particle Swarm Optimization
    Zahara, Erwie
    Liu, An
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS (IMECS 2010), VOLS I-III, 2010, : 36 - +
  • [35] Particle Swarm Optimization Based Steel Rolling Parameter Optimization
    Shi, Jiachuan
    Yin, Dong
    Yang, Guiling
    2014 10TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2014, : 632 - 636
  • [36] Parameter Identification of Doubly Fed Induction Generator (DFIG) using Particle Swarm Optimization (PSO) algorithm
    Mohammed, Bakari
    Zohra, A. R. A. M. A. Fatima
    Omar, Ouledali
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (09): : 261 - 266
  • [37] Research on Parameter Identification of Battery Model Based on Adaptive Particle Swarm Optimization Algorithm
    Zhang, D. H.
    Zhu, G. R.
    Bao, J.
    Ma, Y.
    He, S. J.
    Qiu, S.
    Chen, W.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2015, 12 (07) : 1362 - 1367
  • [38] A Memory-Based Particle Swarm Optimization for Parameter Identification of Lorenz Chaotic System
    Rizk-Allah, Rizk M.
    Farag, M. A.
    Barghout, Mahmoud H.
    Hassanien, Aboul Ella
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION NETWORKS (ICCCN 2021), 2022, 394 : 571 - 587
  • [39] A Particle Swarm Optimization Based on Dynamic Parameter Modification
    Zhang, Yingchao
    Xiong, Xiong
    Chen, Chao
    Huang, Xinyi
    ADVANCES IN SCIENCE AND ENGINEERING, PTS 1 AND 2, 2011, 40-41 : 201 - +
  • [40] Online Parameter Identification of Permanent Magnet Synchronous Motor Based on Fast Particle Swarm Optimization Algorithm with Effective Information Iterated
    Li J.
    Yang S.
    Xie Z.
    Zhang X.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2022, 37 (18): : 4604 - 4613