Parameter identification of induction motor based on particle swarm optimization

被引:12
|
作者
Picardi, C. [1 ]
Rogano, N. [1 ]
机构
[1] Univ Calabria, Via Pietro Bucci 42C, I-87036 Arcavacata Di Rende, Italy
关键词
induction motors; parameter identification; genetic algorithm; optimization methods;
D O I
10.1109/SPEEDAM.2006.1649908
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper deals with the application of the particle swarm optimization (PSO) to the parameter identification of the induction motor. A suitable model of the motor with a specific parameter vector, including electromagnetic and mechanical parameters, is given. The simulation results, presented in the paper, mainly have the purpose to compare the PSO, the genetic algorithm (GA) and a modified PSO with a function "stretching" (SPSO) in terms of the behaviours of the best fitness and the average fitness versus the number of evaluations and of the reconstruction of the output variables by means of the identified parameters.
引用
收藏
页码:968 / +
页数:2
相关论文
共 50 条
  • [21] Improved modal parameter identification method based on particle swarm optimization
    Zhang J.
    Guo X.
    Luo X.
    Zhang Y.
    Xu H.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (02): : 255 - 264
  • [22] Load Identification of Domestic Induction Heating based on Particle Swarm Optimization
    Dominguez, A.
    Otin, A.
    Urriza, I.
    Barragan, L. A.
    Navarro, D.
    Artigas, J. I.
    2014 IEEE 15TH WORKSHOP ON CONTROL AND MODELING FOR POWER ELECTRONICS (COMPEL), 2014,
  • [23] Load Parameter Identification Based on Particle Swarm Optimization and the Comparison to Ant Colony Optimization
    Li Haoguang
    Yu Yunhua
    Shen Xuefeng
    PROCEEDINGS OF THE 2016 IEEE 11TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2016, : 545 - 550
  • [24] Cutting Parameter Optimization Based on particle swarm optimization
    Xi, Junmei
    Liao, Gaohua
    ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL I, PROCEEDINGS, 2009, : 255 - 258
  • [25] A modal parameter identification method of machine tools based on particle swarm optimization
    Yang, Mengxiang
    Dai, Yalan
    Huang, Qiang
    Mao, Xinyong
    Li, Liangjie
    Jiang, Xuchu
    Peng, Yili
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2019, 233 (17) : 6112 - 6123
  • [26] Parameter identification of Box-Jenkins systems based on the particle swarm optimization
    Zong, Tiancheng
    Li, Junhong
    Li, Xiao
    Shang, Liangliang
    Zhang, Xiaojiao
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 1696 - 1701
  • [27] Parameter Identification of Photovoltaic Cell Model Based on Enhanced Particle Swarm Optimization
    Wang, Rongjie
    SUSTAINABILITY, 2021, 13 (02) : 1 - 25
  • [28] Parameter identification of water quality model based on chaotic particle swarm optimization
    Yuan, Jun
    Chen, Bei
    Zhu, Guangcan
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2009, 39 (05): : 1018 - 1022
  • [29] Parameter Identification of SCARA Robot Based on Random Weight Particle Swarm Optimization
    Wang B.
    Qi Z.
    Yan R.
    Liu H.
    1600, Xi'an Jiaotong University (55): : 20 - 27
  • [30] PSO-based evolutionary optimization for parameter identification of an induction motor
    Karimi, Ali
    Choudhry, Muhammad A.
    Feliachi, Ali
    2007 39TH NORTH AMERICAN POWER SYMPOSIUM, VOLS 1 AND 2, 2007, : 659 - 664