Parameter Identification of Doubly Fed Induction Generator (DFIG) using Particle Swarm Optimization (PSO) algorithm

被引:0
|
作者
Mohammed, Bakari [1 ]
Zohra, A. R. A. M. A. Fatima [1 ]
Omar, Ouledali [1 ]
机构
[1] Univ Adrar, Dept Elect Engn, Lab LDDI, Adrar, Algeria
来源
PRZEGLAD ELEKTROTECHNICZNY | 2024年 / 100卷 / 09期
关键词
Doubly fed induction generator (DFIG); parameter identification; classic test; Particle Swarm Optimization (PSO);
D O I
10.15199/48.2024.09.51
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The objective of this study is to determine the parameters of the doubly fed induction generator (DFIG), which is a crucial first step in wind turbine power generation. This research focuses on understanding the dynamics of the DFIG system and aims to develop more precise control systems for network movement and the exchange of active and reactive energy, especially at high speeds in this domain. This research utilizes the particle swarm optimization (PSO) approach to perform DFIG parametric identification. The model simulation is adapted to the identical settings in the MATLAB/Simulink software environment. The identification findings of the "PSO" method are compared to those of traditional testing and validated based on their accuracy and convergence to the energy source values obtained by the dSPACE panel. The findings obtained using the "PSO" algorithm demonstrate superior effectiveness and performance compared to the conventional identification approach.
引用
收藏
页码:261 / 266
页数:6
相关论文
共 50 条
  • [1] Controller design for doubly fed induction generator using particle swarm optimization technique
    Bharti, Om Prakash
    Saket, R. K.
    Nagar, S. K.
    RENEWABLE ENERGY, 2017, 114 : 1394 - 1406
  • [2] Modeling and Control of a Doubly Fed Induction Generator Using PSO Algorithm
    Jalilvand, Abolfazl
    Jabbari, Mehdi
    Govar, Gholamreza Zarei
    Khoshkhoo, Hamid
    INMIC: 2008 INTERNATIONAL MULTITOPIC CONFERENCE, 2008, : 24 - 27
  • [3] Parameter Tuning for Wind Turbine with Doubly Fed Induction Generator Using PSO
    Wu, F.
    Ju, P.
    Zhang, X. P.
    2010 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2010,
  • [4] Parameter Identification of Induction Motor Using Modified Particle Swarm Optimization Algorithm
    Emara, Hassan M.
    Elshamy, Wesam
    Bahgat, A.
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, VOLS 1-5, 2008, : 2194 - +
  • [5] Optimal Controller for Doubly Fed Induction Generator (DFIG) Using Differential Evolutionary Algorithm (DE)
    Suryoatmojo, Heri
    Musthofa, Arif
    Zakariya, A. M. B.
    Robandi, Imam
    Anam, Sjamsjul
    2015 INTERNATIONAL SEMINAR ON INTELLIGENT TECHNOLOGY AND ITS APPLICATIONS (ISITIA), 2015, : 159 - 164
  • [6] Parameter identification of photovoltaic cell/module using genetic algorithm (GA) and particle swarm optimization (PSO)
    Dali, Ali
    Bouharchouche, Abderrezzak
    Diaf, Said
    3RD INTERNATIONAL CONFERENCE ON CONTROL, ENGINEERING & INFORMATION TECHNOLOGY (CEIT 2015), 2015,
  • [7] Optimization of Sliding Mode Control for Doubly Fed Induction Generator Systems Using Particle Swarm and Grey Wolf Algorithms
    Ibrahim, Boussaid
    Abdelkader, Harrouz
    Hartani, Mohamed Amine
    Kayisli, Korhan
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2024, 52 (10) : 1782 - 1795
  • [8] Particle Swarm Optimization for Discrete-Time Inverse Optimal Control of a Doubly Fed Induction Generator
    Ruiz-Cruz, Riemann
    Sanchez, Edgar N.
    Ornelas-Tellez, Fernando
    Loukianov, Alexander G.
    Harley, Ronald G.
    IEEE TRANSACTIONS ON CYBERNETICS, 2013, 43 (06) : 1698 - 1709
  • [9] A genetic Algorithm Based on Optimization for Doubly Fed Induction Generator
    Guediri, A.
    Touil, S.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2022, 35 (01):
  • [10] A genetic algorithm based on optimization for doubly fed induction generator
    Guediri A.
    Touil S.
    International Journal of Engineering, Transactions B: Applications, 2022, 35 (01):