Parameter Identification of Doubly Fed Induction Generator (DFIG) using Particle Swarm Optimization (PSO) algorithm

被引:0
|
作者
Mohammed, Bakari [1 ]
Zohra, A. R. A. M. A. Fatima [1 ]
Omar, Ouledali [1 ]
机构
[1] Univ Adrar, Dept Elect Engn, Lab LDDI, Adrar, Algeria
来源
PRZEGLAD ELEKTROTECHNICZNY | 2024年 / 100卷 / 09期
关键词
Doubly fed induction generator (DFIG); parameter identification; classic test; Particle Swarm Optimization (PSO);
D O I
10.15199/48.2024.09.51
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The objective of this study is to determine the parameters of the doubly fed induction generator (DFIG), which is a crucial first step in wind turbine power generation. This research focuses on understanding the dynamics of the DFIG system and aims to develop more precise control systems for network movement and the exchange of active and reactive energy, especially at high speeds in this domain. This research utilizes the particle swarm optimization (PSO) approach to perform DFIG parametric identification. The model simulation is adapted to the identical settings in the MATLAB/Simulink software environment. The identification findings of the "PSO" method are compared to those of traditional testing and validated based on their accuracy and convergence to the energy source values obtained by the dSPACE panel. The findings obtained using the "PSO" algorithm demonstrate superior effectiveness and performance compared to the conventional identification approach.
引用
收藏
页码:261 / 266
页数:6
相关论文
共 50 条
  • [41] A Reverse Current Tracking Based LVRT Strategy for Doubly Fed Induction Generator (DFIG)
    Huang Qingjun
    Sun Mucun
    Zou Xudong
    Tong Li
    Xiong Wei
    Chen Jianqing
    39TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2013), 2013, : 7295 - 7300
  • [42] Modeling and Control of a Doubly Fed Induction Generator (DFIG) Based Wind Conversion System
    Ghennam, T.
    Berkouk, E. M.
    Francois, B.
    2009 INTERNATIONAL CONFERENCE ON POWER ENGINEERING, ENERGY AND ELECTRICAL DRIVES, 2009, : 496 - +
  • [43] Comparative Analysis of the Doubly Fed Induction Generator (DFIG) Under Balanced Voltage Sag
    Osorio, C. M. R.
    Chaves, J. S. S.
    Murari, A. L. L. F.
    Sguarezi Filho, A. J.
    IEEE LATIN AMERICA TRANSACTIONS, 2017, 15 (05) : 869 - 876
  • [44] Investigating the effect of PID controller on inertial response in doubly fed induction generator (DFIG)
    Ahmad, Thelfa
    Littler, Tim
    Naeem, Wasif
    2016 UKACC 11TH INTERNATIONAL CONFERENCE ON CONTROL (CONTROL), 2016,
  • [45] A Sensorless Adaptive Grid Side Control Approach for Doubly Fed Induction Generator (DFIG)
    Nair, Anuprabha R.
    Bhattarai, Rojan
    Kamalasadan, Sukumar
    2019 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING, 2019,
  • [46] Structural integrity of a Doubly Fed Induction Generator (DFIG) of a wind power system (WPS)
    Ezzahi, Mohammed
    Khafallah, Mohamed
    Majid, Fatima
    IGF WORKSHOP FRACTURE AND STRUCTURAL INTEGRITY, 2018, 9 : 221 - 228
  • [47] Doubly fed induction generator (DFIG) wind turbine controlled by artificial organic networks
    Ponce, Pedro
    Ponce, Hiram
    Molina, Arturo
    SOFT COMPUTING, 2018, 22 (09) : 2867 - 2879
  • [48] Robust Control of a Doubly Fed Induction Generator (DFIG) Fed by a Direct AC-AC Converter
    Boudjema, Zinelaabidine
    Meroufel, Abdelkader
    Amari, Ahmed
    PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (12A): : 213 - 221
  • [49] Doubly fed induction generator (DFIG) wind turbine controlled by artificial organic networks
    Pedro Ponce
    Hiram Ponce
    Arturo Molina
    Soft Computing, 2018, 22 : 2867 - 2879
  • [50] Modeling of doubly fed induction generator (DFIG) equipped wind turbine for dynamic studies
    Marinelli, Mattia
    Morini, Andrea
    Pitto, Andrea
    Silvestro, Federico
    2008 PROCEEDINGS OF THE 43RD INTERNATIONAL UNIVERSITIES POWER ENGINEERING CONFERENCE, VOLS 1-3, 2008, : 820 - 825