BACKGROUND AND PURPOSE: To prospectively evaluate the signal-to-noise ratio (SNR) improvement in diffusion-weighted imaging (DWI) of the spine with the use of a newly developed non-Carr-Purcell-Meiboom-Gill (non-CPMG) single-shot fast spin-echo (SS-FSE) sequence and its effect on apparent diffusion coefficient (ADC) measurements. MATERIALS AND METHODS: Twenty-four patients were enrolled after written informed consent. DWI of the spine was obtained with an echo-planar imaging (EPI)-based sequence followed by a non-CPMG SS-FSE technique. SNR and ADC values were measured over a lesion-free vertebral corpus. A quality score was assigned for each set of images to assess the image quality. When a spinal lesion was present, contrast-to-noise ratio (CNR) and ADC were also measured. Student t tests were used for statistical analysis. RESULTS: Mean SNR values were 5.83 +/- 2.2 and 11.68 +/- 2.87 for EPI and non-CPMG SS-FSE DWI, respectively. SNR values measured in DWI using parallel imaging were found to be significantly higher(P < .01). Mean ADCs of the spine were 0.53 +/- 0.15 and 0.35 +/- 0.15 X 10(-3) mm(2)/s for EPI and non-CPMG SS-FSE DWI, respectively. Quality scores were found to be higher for the non-CPMG SS-FSE DWI technique (P < .05). Overall lesion CNR was found to be higher in DWI with non-CPMG SS-FSE. CONCLUSION: The non-CPMG SS-FSE technique provides a significant improvement to current EPI-based DWI of the spine. A study including a larger number of patients is required to determine the use of this DWI sequence as a supplementary tool to conventional MR imaging for increasing diagnostic confidence in spinal pathologic conditions.
机构:
Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USAStanford Univ, Dept Radiol, Stanford, CA 94305 USA
Lee, Philip K.
Hargreaves, Brian A.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
Stanford Univ, Dept Bioengn, Stanford, CA 94305 USAStanford Univ, Dept Radiol, Stanford, CA 94305 USA