Interaction between neoclassical effects and ion temperature gradient turbulence in gradient- and flux-driven gyrokinetic simulations

被引:15
|
作者
Oberparleiter, M. [1 ,2 ]
Jenko, F. [3 ]
Told, D. [3 ]
Doerk, H. [2 ]
Goerler, T. [2 ]
机构
[1] Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden
[2] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany
[3] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
基金
欧洲研究理事会;
关键词
SELF-ORGANIZED CRITICALITY; TRANSPORT; PLASMA; PHYSICS; MODE; CODE;
D O I
10.1063/1.4947200
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Neoclassical and turbulent transport in tokamaks has been studied extensively over the past decades, but their possible interaction remains largely an open question. The two are only truly independent if the length scales governing each of them are sufficiently separate, i.e., if the ratio rho star between ion gyroradius and the pressure gradient scale length is small. This is not the case in particularly interesting regions such as transport barriers. Global simulations of a collisional ion-temperature-gradient-driven microturbulence performed with the nonlinear global gyrokinetic code GENE are presented. In particular, comparisons are made between systems with and without neoclassical effects. In fixed-gradient simulations, the modified radial electric field is shown to alter the zonal flow pattern such that a significant increase in turbulent transport is observed for rho star greater than or similar to 1/300. Furthermore, the dependency of the flux on the collisionality changes. In simulations with fixed power input, we find that the presence of neoclassical effects decreases the frequency and amplitude of intermittent turbulent transport bursts (avalanches) and thus plays an important role for the self-organisation behaviour.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Gyrokinetic simulation of zonal flows and ion temperature gradient turbulence in helical systems
    Watanabe, T.-H.
    Sugama, H.
    Ferrando-Margalet, S.
    NUCLEAR FUSION, 2007, 47 (09) : 1383 - 1390
  • [42] ION TEMPERATURE-GRADIENT DRIVEN TURBULENCE IN THE WEAK DENSITY GRADIENT LIMIT
    HAMAGUCHI, S
    HORTON, W
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (12): : 3040 - 3046
  • [43] GYROKINETIC SIMULATIONS OF EXB VELOCITY-SHEAR EFFECTS ON ION-TEMPERATURE-GRADIENT MODES
    COHEN, BI
    WILLIAMS, TJ
    DIMITS, AM
    BYERS, JA
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1993, 5 (08): : 2967 - 2980
  • [44] Self-Organized Evolution of the Internal Transport Barrier in Ion-Temperature-Gradient Driven Gyrokinetic Turbulence
    Wang, Shaojie
    Wang, Zihao
    Wu, Tiannan
    PHYSICAL REVIEW LETTERS, 2024, 132 (06)
  • [45] Gyrokinetic simulation of the interplay between ion temperature gradient turbulence and reversed shear Alfvén Eigenmodes
    Yang, Yuheng
    Ye, Lei
    Chen, Yang
    Xiang, Nong
    Sun, Youwen
    NUCLEAR FUSION, 2025, 65 (01)
  • [46] Size convergence of the E x B staircase pattern in flux tube simulations of ion temperature gradient-driven turbulence
    Lippert, M.
    Rath, F.
    Peeters, A. G.
    PHYSICS OF PLASMAS, 2023, 30 (07)
  • [47] Comparison between kinetic-ballooning-mode-driven turbulence and ion-temperature-gradient-driven turbulence
    Maeyama, S.
    Ishizawa, A.
    Watanabe, T. -H.
    Nakata, M.
    Miyato, N.
    Yagi, M.
    Idomura, Y.
    PHYSICS OF PLASMAS, 2014, 21 (05)
  • [48] Ion temperature gradient driven turbulence with strong trapped ion resonance
    Kosuga, Y.
    Itoh, S-I.
    Diamond, P. H.
    Itoh, K.
    Lesur, M.
    PHYSICS OF PLASMAS, 2014, 21 (10)
  • [49] Gyrokinetic and gyrofluid models for zonal flow dynamics in ion and electron temperature gradient turbulence
    Sugama, H.
    Watanabe, T. -H.
    Margalet, S. Ferrando i
    THEORY OF FUSION PLASMAS, 2006, 871 : 412 - +
  • [50] Gyrokinetic particle-in-cell calculations of ion temperature gradient driven turbulence with parallel nonlinearity and strong flow corrections
    Kniep, JC
    Leboeuf, JNG
    Decyk, VK
    COMPUTER PHYSICS COMMUNICATIONS, 2004, 164 (1-3) : 98 - 102