Interaction between neoclassical effects and ion temperature gradient turbulence in gradient- and flux-driven gyrokinetic simulations

被引:15
|
作者
Oberparleiter, M. [1 ,2 ]
Jenko, F. [3 ]
Told, D. [3 ]
Doerk, H. [2 ]
Goerler, T. [2 ]
机构
[1] Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden
[2] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany
[3] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
基金
欧洲研究理事会;
关键词
SELF-ORGANIZED CRITICALITY; TRANSPORT; PLASMA; PHYSICS; MODE; CODE;
D O I
10.1063/1.4947200
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Neoclassical and turbulent transport in tokamaks has been studied extensively over the past decades, but their possible interaction remains largely an open question. The two are only truly independent if the length scales governing each of them are sufficiently separate, i.e., if the ratio rho star between ion gyroradius and the pressure gradient scale length is small. This is not the case in particularly interesting regions such as transport barriers. Global simulations of a collisional ion-temperature-gradient-driven microturbulence performed with the nonlinear global gyrokinetic code GENE are presented. In particular, comparisons are made between systems with and without neoclassical effects. In fixed-gradient simulations, the modified radial electric field is shown to alter the zonal flow pattern such that a significant increase in turbulent transport is observed for rho star greater than or similar to 1/300. Furthermore, the dependency of the flux on the collisionality changes. In simulations with fixed power input, we find that the presence of neoclassical effects decreases the frequency and amplitude of intermittent turbulent transport bursts (avalanches) and thus plays an important role for the self-organisation behaviour.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Gradient-driven flux-tube simulations of ion temperature gradient turbulence close to the non-linear threshold
    Peeters, A. G.
    Rath, F.
    Buchholz, R.
    Camenen, Y.
    Candy, J.
    Casson, F. J.
    Grosshauser, S. R.
    Hornsby, W. A.
    Strintzi, D.
    Weikl, A.
    PHYSICS OF PLASMAS, 2016, 23 (08)
  • [22] Flux- and gradient-driven global gyrokinetic simulation of tokamak turbulence
    Goerler, Tobias
    Lapillonne, Xavier
    Brunner, Stephan
    Dannert, Tilman
    Jenko, Frank
    Aghdam, Sohrab Khosh
    Marcus, Patrick
    McMillan, Ben F.
    Merz, Florian
    Sauter, Olivier
    Told, Daniel
    Villard, Laurent
    PHYSICS OF PLASMAS, 2011, 18 (05)
  • [24] Role of stable eigenmodes in gyrokinetic models of ion temperature gradient turbulence
    Hatch, D. R.
    Terry, P. W.
    Nevins, W. M.
    Dorland, W.
    PHYSICS OF PLASMAS, 2009, 16 (02)
  • [25] Coupled ion temperature gradient and trapped electron mode to electron temperature gradient mode gyrokinetic simulations
    Waltz, R. E.
    Candy, J.
    Fahey, M.
    PHYSICS OF PLASMAS, 2007, 14 (05)
  • [26] Gyrokinetic simulations of zonal flows and ion temperature gradient turbulence in HL-2A ITB plasmas
    Xu, J. Q.
    Peng, X. D.
    Hao, G. Z.
    Chen, W.
    Li, J. Q.
    Qu, H. P.
    Li, J. C.
    Ren, G. Z.
    He, X. X.
    Li, Y. G.
    PHYSICS OF PLASMAS, 2022, 29 (01)
  • [27] Ion-temperature-gradient-driven modes in neoclassical regime
    1600, Publ by American Inst of Physics, Woodbury, NY, USA (05):
  • [28] ION-TEMPERATURE-GRADIENT-DRIVEN MODES IN NEOCLASSICAL REGIME
    YAGI, M
    WANG, JP
    KIM, YB
    AZUMI, M
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1993, 5 (04): : 1179 - 1187
  • [29] GYROKINETIC SIMULATION OF ION-TEMPERATURE-GRADIENT-DRIVEN TURBULENCE IN 3D TOROIDAL GEOMETRY
    PARKER, SE
    LEE, WW
    SANTORO, RA
    PHYSICAL REVIEW LETTERS, 1993, 71 (13) : 2042 - 2045
  • [30] Global gyrokinetic simulation of ion temperature gradient driven turbulence in plasmas using a canonical Maxwellian distribution
    Idomura, Y
    Tokuda, S
    Kishimoto, Y
    NUCLEAR FUSION, 2003, 43 (04) : 234 - 243