Interaction between neoclassical effects and ion temperature gradient turbulence in gradient- and flux-driven gyrokinetic simulations

被引:15
|
作者
Oberparleiter, M. [1 ,2 ]
Jenko, F. [3 ]
Told, D. [3 ]
Doerk, H. [2 ]
Goerler, T. [2 ]
机构
[1] Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden
[2] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany
[3] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
基金
欧洲研究理事会;
关键词
SELF-ORGANIZED CRITICALITY; TRANSPORT; PLASMA; PHYSICS; MODE; CODE;
D O I
10.1063/1.4947200
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Neoclassical and turbulent transport in tokamaks has been studied extensively over the past decades, but their possible interaction remains largely an open question. The two are only truly independent if the length scales governing each of them are sufficiently separate, i.e., if the ratio rho star between ion gyroradius and the pressure gradient scale length is small. This is not the case in particularly interesting regions such as transport barriers. Global simulations of a collisional ion-temperature-gradient-driven microturbulence performed with the nonlinear global gyrokinetic code GENE are presented. In particular, comparisons are made between systems with and without neoclassical effects. In fixed-gradient simulations, the modified radial electric field is shown to alter the zonal flow pattern such that a significant increase in turbulent transport is observed for rho star greater than or similar to 1/300. Furthermore, the dependency of the flux on the collisionality changes. In simulations with fixed power input, we find that the presence of neoclassical effects decreases the frequency and amplitude of intermittent turbulent transport bursts (avalanches) and thus plays an important role for the self-organisation behaviour.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Gyrokinetic secondary instability theory for electron and ion temperature gradient driven turbulence
    Plunk, Gabriel
    PHYSICS OF PLASMAS, 2007, 14 (11)
  • [12] NUMERICAL SIMULATIONS OF ION TEMPERATURE GRADIENT-DRIVEN TURBULENCE
    OTTAVIANI, M
    ROMANELLI, F
    BENZI, R
    BRISCOLINI, M
    SANTANGELO, P
    SUCCI, S
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (01): : 67 - 74
  • [13] Direct kinetic Simulations of ion temperature gradient driven turbulence
    Watanabe, TH
    Sugama, H
    PLASMA PHYSICS, 2003, 669 : 463 - 466
  • [14] Flux-driven gyrokinetic simulations of ion turbulent transport at low magnetic shear
    Sarazin, Y.
    Strugarek, A.
    Dif-Pradalier, G.
    Abiteboul, J.
    Allfrey, S.
    Garbet, X.
    Ghendrih, Ph
    Grandgirard, V.
    Latu, G.
    THEORY OF FUSION PLASMAS: JOINT VARENNA-LAUSANNE INTERNATIONAL WORKSHOP, 2010, 260
  • [15] Gyrokinetic-Vlasov simulations of the ion temperature gradient turbulence in tokamak and helical systems
    Watanabe, T. -H.
    Sugama, H.
    Margalet, S. Ferrando i
    THEORY OF FUSION PLASMAS, 2006, 871 : 264 - +
  • [16] Verification of gyrokinetic δf simulations of electron temperature gradient turbulence
    Nevins, W. M.
    Parker, S. E.
    Chen, Y.
    Candy, J.
    Dimit, A.
    Dorland, W.
    Hammett, G. W.
    Jenko, F.
    PHYSICS OF PLASMAS, 2007, 14 (08)
  • [17] Neoclassical and turbulent E x B flows in flux-driven gyrokinetic simulations of Ohmic tokamak plasmas
    Niskala, P.
    Gurchenko, A. D.
    Gusakov, E. Z.
    Altukhov, A. B.
    Esipov, L. A.
    Chone, L.
    Kiviniemi, T. P.
    Leerink, S.
    NUCLEAR FUSION, 2018, 58 (11)
  • [18] Ion temperature gradient turbulence simulations and plasma flux surface shape
    Waltz, RE
    Miller, RL
    PHYSICS OF PLASMAS, 1999, 6 (11) : 4265 - 4271
  • [19] A study of self organized criticality in ion temperature gradient mode driven gyrokinetic turbulence
    Mavridis, M.
    Isliker, H.
    Vlahos, L.
    Goerler, T.
    Jenko, F.
    Told, D.
    PHYSICS OF PLASMAS, 2014, 21 (10)
  • [20] Comparison between kinetic and fluid simulations of slab ion temperature gradient driven turbulence
    Sugama, H
    Watanabe, TH
    Horton, W
    PHYSICS OF PLASMAS, 2003, 10 (03) : 726 - 736