Content-Based Image Retrieval: The State of the Art

被引:0
|
作者
Chavda, Sagar [1 ]
Goyani, Mahesh M. [1 ]
机构
[1] GEC, Dept Comp Engn, Modasa, India
来源
关键词
TBIR; CBIR; Feature Extraction; Feature Selection; Distance Measure; Ranking; COLOR; DESCRIPTOR; RECOGNITION; WAVELET; SCALE; CBIR;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Content-Based Image Retrieval (CBIR) is the solution to the image retrieval problem based on the contents of the query image. The objective of the CBIR system is to retrieve the visually similar images from the database efficiently and effectively but still, no satisfactory performance has been achieved. The performance of the CBIR system mainly depends on the feature extraction, feature selection, distance measures (similarity computation), Classification, and ranking of matched images. Feature extraction is the procedure of deriving the set of features from images for matching the visual similarity and they can be further classified based on color, texture, and shape descriptors. Performance is not up to mark when Color, Texture or Shape descriptors individually applied. Better determination of blend of Color, Texture, and/or Shape features can enhance performance in the context of precision and recall. This paper mainly concentrates on the brief review of the different state of art techniques used for CBIR along with prerequisite knowledge over this domain.
引用
收藏
页码:193 / 212
页数:20
相关论文
共 50 条
  • [31] Content-based image retrieval in astronomy
    Csillaghy, A
    Hinterberger, H
    Benz, AO
    INFORMATION RETRIEVAL, 2000, 3 (03): : 229 - 241
  • [32] Content-based image retrieval methods
    Vassilieva, N. S.
    PROGRAMMING AND COMPUTER SOFTWARE, 2009, 35 (03) : 158 - 180
  • [33] A content-based image retrieval system
    Huang, CL
    Huang, DH
    IMAGE AND VISION COMPUTING, 1998, 16 (03) : 149 - 163
  • [34] Learning in content-based image retrieval
    Huang, TS
    Zhou, XS
    Nakazato, M
    Wu, Y
    Cohen, I
    2ND INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING, PROCEEDINGS, 2002, : 155 - 162
  • [35] Gaps in content-based image retrieval
    Deserno, Thomas M.
    Antani, Sameer
    Long, Rodney
    MEDICAL IMAGING 2007: PACS AND IMAGING INFORMATICS, 2007, 6516
  • [36] THE DRUG TABLET IMAGE RETRIEVAL SYSTEM BASED ON CONTENT-BASED IMAGE RETRIEVAL
    Yu, Chiu-Chung
    Wen, Che-Yen
    Lu, Chuan-Pin
    Chen, Yung-Fou
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2012, 8 (7A): : 4497 - 4508
  • [37] Image Features Optimizing for Content-Based Image Retrieval
    Shi, Zhiping
    Liu, Xi
    He, Qing
    Shi, Zhongzhi
    2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 4, 2009, : 260 - 264
  • [38] Medical image description in content-based image retrieval
    Hong, Shao
    Cui Wen-Cheng
    Tang Li
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 6336 - 6339
  • [39] Content-based image retrieval as a tool for image understanding
    Pauwels, EJ
    Frederix, G
    MULTIMEDIA STORAGE AND ARCHIVING SYSTEMS IV, 1999, 3846 : 316 - 327
  • [40] A Content-based Image Retrieval System with Image Semantic
    Ma Ying
    Zhang Laomo
    Ma Jinxing
    MICRO NANO DEVICES, STRUCTURE AND COMPUTING SYSTEMS, 2011, 159 : 638 - 643