Content-based image retrieval in astronomy

被引:13
|
作者
Csillaghy, A [1 ]
Hinterberger, H
Benz, AO
机构
[1] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[2] ETH Zentrum, Inst Comp Sci, CH-8092 Zurich, Switzerland
[3] ETH Zentrum, Astron Inst, CH-8092 Zurich, Switzerland
来源
INFORMATION RETRIEVAL | 2000年 / 3卷 / 03期
关键词
astronomy; image archives; self-organizing maps; image feature indexing;
D O I
10.1023/A:1026568809834
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Content-based image retrieval in astronomy needs methods that can deal with an image content made of noisy and diffuse structures. This motivates investigations on how information should be summarized and indexed for this specific kind of images. The method we present first summarizes the image information content by partitioning the image in regions with same texture. We call this process texture summarization. Second. indexing features are generated by examining the distribution of parameters describing image regions. indexing features can be associated with global or local image characteristics. Both kinds of indexing features are evaluated on the retrieval system of the Zurich archive of solar radio spectrograms. The evaluation shows that generating local indexing features using self-organizing maps yields the best effectiveness of all tested methods.
引用
收藏
页码:229 / 241
页数:13
相关论文
共 50 条
  • [1] Content-Based Image Retrieval in Astronomy
    A. Csillaghy
    H. Hinterberger
    A.O. Benz
    Information Retrieval, 2000, 3 : 229 - 241
  • [2] Content-based image retrieval
    Ciocca, Gianluigi
    Schettini, Raimondo
    Santini, Simone
    Bertini, Marco
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (24) : 37903 - 37903
  • [3] Content-based image retrieval
    Multimedia Tools and Applications, 2023, 82 : 37903 - 37903
  • [4] Content-Based Image Retrieval
    Zaheer, Yasir
    SECOND INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING, 2010, 7546
  • [5] Content-based Image Retrieval
    Marinovic, Igor
    Fuerstner, Igor
    2008 6TH INTERNATIONAL SYMPOSIUM ON INTELLIGENT SYSTEMS AND INFORMATICS, 2008, : 86 - +
  • [6] Content-based image retrieval using COSFIRE descriptors with application to radio astronomy
    Ndung'u, Steven
    Grobler, Trienko
    Wijnholds, Stefan J.
    Azzopardi, George
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2025, 537 (04) : 3286 - 3297
  • [7] Content-based Image Retrieval for Medical Image
    Zheng, Kaimei
    2015 11TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2015, : 219 - 222
  • [8] HIERARCHICAL CONTENT-BASED IMAGE RETRIEVAL
    俞勇
    施鹏飞
    JournalofShanghaiJiaotongUniversity, 1999, (01) : 9 - 13
  • [9] Survey on content-based image retrieval
    Liu Huailiang
    Wavelet Active Media Technology and Information Processing, Vol 1 and 2, 2006, : 930 - 935
  • [10] CONTENT-BASED VESSEL IMAGE RETRIEVAL
    Mukherjee, Satabdi
    Cohen, Samuel
    Gertner, Izidor
    AUTOMATIC TARGET RECOGNITION XXVI, 2016, 9844