Content-Based Image Retrieval: The State of the Art

被引:0
|
作者
Chavda, Sagar [1 ]
Goyani, Mahesh M. [1 ]
机构
[1] GEC, Dept Comp Engn, Modasa, India
来源
关键词
TBIR; CBIR; Feature Extraction; Feature Selection; Distance Measure; Ranking; COLOR; DESCRIPTOR; RECOGNITION; WAVELET; SCALE; CBIR;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Content-Based Image Retrieval (CBIR) is the solution to the image retrieval problem based on the contents of the query image. The objective of the CBIR system is to retrieve the visually similar images from the database efficiently and effectively but still, no satisfactory performance has been achieved. The performance of the CBIR system mainly depends on the feature extraction, feature selection, distance measures (similarity computation), Classification, and ranking of matched images. Feature extraction is the procedure of deriving the set of features from images for matching the visual similarity and they can be further classified based on color, texture, and shape descriptors. Performance is not up to mark when Color, Texture or Shape descriptors individually applied. Better determination of blend of Color, Texture, and/or Shape features can enhance performance in the context of precision and recall. This paper mainly concentrates on the brief review of the different state of art techniques used for CBIR along with prerequisite knowledge over this domain.
引用
收藏
页码:193 / 212
页数:20
相关论文
共 50 条
  • [21] Content-based image retrieval with WISFC
    Zhang, H. (guwenjiao1989@126.com), 1600, Binary Information Press (10):
  • [22] Prefetching for content-based image retrieval
    Yoon, J
    Jayant, N
    IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL I AND II, PROCEEDINGS, 2002, : A413 - A416
  • [23] Content-based ultrasound image retrieval
    Kwak, DM
    Kim, BS
    Park, CH
    Kim, SJ
    Kim, YM
    Park, KH
    METMBS'01: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICS AND ENGINEERING TECHNIQUES IN MEDICINE AND BIOLOGICAL SCIENCES, 2001, : 512 - 517
  • [24] Content-based image retrieval - A survey
    Choras, Ryszard S.
    BIOMETRICS, COMPUTER SECURITY SYSTEMS AND ARTIFICIAL INTELLIGENCE APPLICATIONS, 2006, : 31 - 44
  • [25] Content-Based Histopathological Image Retrieval
    Nunez-Fernandez, Camilo
    Farias, Humberto
    Solar, Mauricio
    SENSORS, 2025, 25 (05)
  • [26] Study on Content-Based of Image Retrieval
    Zhang, Chi
    Huang, Lei
    LISS 2013, 2015, : 591 - 594
  • [27] Content-based retinal image retrieval
    Sukhia, Komal Nain
    Riaz, Muhammad Mohsin
    Ghafoor, Abdul
    IET IMAGE PROCESSING, 2019, 13 (09) : 1525 - 1534
  • [28] Localized content-based image retrieval
    Rahmani, Rouhollah
    Goldman, Sally A.
    Zhang, Hui
    Cholleti, Sharath R.
    Fritts, Jason E.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (11) : 1902 - 1912
  • [29] Content-based image retrieval speedup
    Fadaei, Sadegh
    Rashno, Abdolreza
    Rashno, Elyas
    2019 5TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS 2019), 2019,
  • [30] Image coding for content-based retrieval
    Swanson, MD
    Hosur, S
    Tewfik, AH
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING '96, 1996, 2727 : 4 - 15