Agglomerative Hierarchical Speaker Clustering using Incremental Gaussian Mixture Cluster Modeling

被引:0
|
作者
Han, Kyu J. [1 ]
Narayanan, Shrikanth S. [1 ]
机构
[1] Univ So Calif, Ming Hsieh Dept Elect Engn, SAIL, Viterbi Sch Engn, Los Angeles, CA 90089 USA
关键词
agglomerative hierarchical speaker clustering; inter-cluster distance measure; incremental Gaussian mixture cluster modeling;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel cluster modeling method for inter-cluster distance measurement within the framework of agglomerative hierarchical speaker clustering, namely, incremental Gaussian mixture cluster modeling. This method uses a single Gaussian distribution to model each initial cluster, but represents any newly merged cluster using a distribution whose pdf is the weighted sum of the pdf's of the respective model distributions for the clusters involved in the particular merging process. As a result, clusters are smoothly transitioned to be modeled by Gaussian mixtures whose components are incremented as merging recursions continue during clustering. The proposed method can overcome the limited cluster representation capability of conventional single Gaussian cluster modeling. Through experiments on various sets of initial clusters, it is demonstrated that our approach consequently improves the reliability of speaker clustering performance.
引用
收藏
页码:20 / 23
页数:4
相关论文
共 50 条
  • [41] An Approach for Fast Hierarchical Agglomerative Clustering Using Graphics Processors with CUDA
    Shalom, S. A. Arul
    Dash, Manoranjan
    Tue, Minh
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT II, PROCEEDINGS, 2010, 6119 : 35 - +
  • [42] Speaker verification using adapted Gaussian mixture models
    Reynolds, DA
    Quatieri, TF
    Dunn, RB
    DIGITAL SIGNAL PROCESSING, 2000, 10 (1-3) : 19 - 41
  • [43] Agglomerative Hierarchical Clustering for Information Retrieval Using Latent Semantic Index
    Park, Hansaem
    Kwon, Kyunglag
    Khiati, Abdel-ilah Zakaria
    Lee, Jeungmin
    Chung, In-Jeong
    2015 IEEE INTERNATIONAL CONFERENCE ON SMART CITY/SOCIALCOM/SUSTAINCOM (SMARTCITY), 2015, : 426 - 431
  • [44] On Agglomerative Hierarchical Clustering Using Clusterwise Tolerance Based Pairwise Constraints
    Hamasuna, Yukihiro
    Endo, Yasunori
    Miyamoto, Sadaaki
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2012, 16 (01) : 174 - 179
  • [45] Color image segmentation using anisotropic diffusion and agglomerative hierarchical clustering
    Kim, D
    Ho, YS
    Manjunath, BS
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2002, PROCEEDING, 2002, 2532 : 759 - 766
  • [46] Solving non-uniqueness in agglomerative hierarchical clustering using multidendrograms
    Fernandez, Alberto
    Gomez, Sergio
    JOURNAL OF CLASSIFICATION, 2008, 25 (01) : 43 - 65
  • [47] Solving Non-Uniqueness in Agglomerative Hierarchical Clustering Using Multidendrograms
    Alberto Fernández
    Sergio Gómez
    Journal of Classification, 2008, 25 : 43 - 65
  • [48] FULLY BAYESIAN INFERENCE OF MULTI-MIXTURE GAUSSIAN MODEL AND ITS EVALUATION USING SPEAKER CLUSTERING
    Tawara, Naohiro
    Ogawa, Tetsuji
    Watanabe, Shinji
    Kobayashi, Tetsunori
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 5253 - 5256
  • [49] Efficient Clustering Approach using Incremental and Hierarchical Clustering Methods
    Srinivas, M.
    Mohan, C. Krishna
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [50] Low Power Speaker Identification by Integrated Clustering and Gaussian Mixture Model Scoring
    Iliev, Nick
    Gianelli, Alberto
    Trivedi, Amit Ranjan
    IEEE EMBEDDED SYSTEMS LETTERS, 2020, 12 (01) : 9 - 12