Agglomerative Hierarchical Speaker Clustering using Incremental Gaussian Mixture Cluster Modeling

被引:0
|
作者
Han, Kyu J. [1 ]
Narayanan, Shrikanth S. [1 ]
机构
[1] Univ So Calif, Ming Hsieh Dept Elect Engn, SAIL, Viterbi Sch Engn, Los Angeles, CA 90089 USA
关键词
agglomerative hierarchical speaker clustering; inter-cluster distance measure; incremental Gaussian mixture cluster modeling;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel cluster modeling method for inter-cluster distance measurement within the framework of agglomerative hierarchical speaker clustering, namely, incremental Gaussian mixture cluster modeling. This method uses a single Gaussian distribution to model each initial cluster, but represents any newly merged cluster using a distribution whose pdf is the weighted sum of the pdf's of the respective model distributions for the clusters involved in the particular merging process. As a result, clusters are smoothly transitioned to be modeled by Gaussian mixtures whose components are incremented as merging recursions continue during clustering. The proposed method can overcome the limited cluster representation capability of conventional single Gaussian cluster modeling. Through experiments on various sets of initial clusters, it is demonstrated that our approach consequently improves the reliability of speaker clustering performance.
引用
收藏
页码:20 / 23
页数:4
相关论文
共 50 条
  • [11] Competence maps using agglomerative hierarchical clustering
    Barirani, Ahmad
    Agard, Bruno
    Beaudry, Catherine
    JOURNAL OF INTELLIGENT MANUFACTURING, 2013, 24 (02) : 373 - 384
  • [12] Fast incremental clustering of Gaussian mixture speaker models for scaling up retrieval in on-line broadcast
    Rougui, J. E.
    Rziza, M.
    Aboutajdine, D.
    Gelgon, M.
    Martinez, J.
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 5379 - 5382
  • [13] Hierarchical speaker identification using speaker clustering
    Sun, B
    Liu, WJ
    Zhong, QH
    2003 INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING AND KNOWLEDGE ENGINEERING, PROCEEDINGS, 2003, : 299 - 304
  • [14] Semantic Clustering of Functional Requirements Using Agglomerative Hierarchical Clustering
    Salman, Hamzeh Eyal
    Hammad, Mustafa
    Seriai, Abdelhak-Djamel
    Al-Sbou, Ahed
    INFORMATION, 2018, 9 (09)
  • [15] Cluster Validity Measures Based Agglomerative Hierarchical Clustering for Network Data
    Hamasuna, Yukihiro
    Nakano, Shusuke
    Ozaki, Ryo
    Endo, Yasunori
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2019, 23 (03) : 577 - 583
  • [16] Agglomerative Hierarchical Clustering Based on Local Optimization for Cluster Validity Measures
    Ozaki, Ryo
    Hamasuna, Yukihiro
    Endo, Yasunori
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 1822 - 1827
  • [17] Speaker Classification via Supervised Hierarchical Clustering Using ICA Mixture Model
    Azam, Muhammad
    Bouguila, Nizar
    IMAGE AND SIGNAL PROCESSING (ICISP 2016), 2016, 9680 : 193 - 202
  • [18] Camp Butner Live-Site UXO Classification Using Hierarchical Clustering and Gaussian Mixture Modeling
    Bijamov, Alex
    Fernandez, Juan Pablo
    Barrowes, Benjamin E.
    Shamatava, Irma
    O'Neill, Kevin
    Shubitidze, Fridon
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (08): : 5218 - 5229
  • [19] Hierarchical Agglomerative Clustering Using Common Neighbours Similarity
    Makrehchi, Masoud
    2016 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2016), 2016, : 546 - 551
  • [20] Anomaly Detection Using Agglomerative Hierarchical Clustering Algorithm
    Mazarbhuiya, Fokrul Alom
    AlZahrani, Mohammed Y.
    Georgieva, Lilia
    INFORMATION SCIENCE AND APPLICATIONS 2018, ICISA 2018, 2019, 514 : 475 - 484