Agglomerative Hierarchical Speaker Clustering using Incremental Gaussian Mixture Cluster Modeling

被引:0
|
作者
Han, Kyu J. [1 ]
Narayanan, Shrikanth S. [1 ]
机构
[1] Univ So Calif, Ming Hsieh Dept Elect Engn, SAIL, Viterbi Sch Engn, Los Angeles, CA 90089 USA
关键词
agglomerative hierarchical speaker clustering; inter-cluster distance measure; incremental Gaussian mixture cluster modeling;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel cluster modeling method for inter-cluster distance measurement within the framework of agglomerative hierarchical speaker clustering, namely, incremental Gaussian mixture cluster modeling. This method uses a single Gaussian distribution to model each initial cluster, but represents any newly merged cluster using a distribution whose pdf is the weighted sum of the pdf's of the respective model distributions for the clusters involved in the particular merging process. As a result, clusters are smoothly transitioned to be modeled by Gaussian mixtures whose components are incremented as merging recursions continue during clustering. The proposed method can overcome the limited cluster representation capability of conventional single Gaussian cluster modeling. Through experiments on various sets of initial clusters, it is demonstrated that our approach consequently improves the reliability of speaker clustering performance.
引用
收藏
页码:20 / 23
页数:4
相关论文
共 50 条
  • [31] Speaker Verification Using Gaussian Mixture Model
    Jagtap, Shilpa S.
    Bhalke, D. G.
    2015 INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING (ICPC), 2015,
  • [32] Clustering Acoustic Segments Using Multi-Stage Agglomerative Hierarchical Clustering
    Lerato, Lerato
    Niesler, Thomas
    PLOS ONE, 2015, 10 (10):
  • [33] Horizontal Partitioning of Multimedia Databases Using Hierarchical Agglomerative Clustering
    Rodriguez-Mazahua, Lisbeth
    Alor-Hernandez, Giner
    Antonieta Abud-Figueroa, Ma.
    Gustavo Pelaez-Camarena, S.
    NATURE-INSPIRED COMPUTATION AND MACHINE LEARNING, PT II, 2014, 8857 : 296 - 309
  • [34] A Novel Approach for Climate Classification Using Agglomerative Hierarchical Clustering
    Uppalapati, Sanketh
    Garg, Vishal
    Pudi, Vikram
    Mathur, Jyotirmay
    Gupta, Raj
    Bhatia, Aviruch
    ENERGY INFORMATICS, EI.A 2023, PT I, 2024, 14467 : 152 - 167
  • [35] Agglomerative hierarchical clustering using new Boolean dissimilarity measures
    González, CG
    Veira Rodriguez, ALB
    De Oliveira, JM
    de Almeida, JLA
    ADVANCES IN INTELLIGENT SYSTEMS AND ROBOTICS, 2003, 101 : 130 - 138
  • [36] Using Hierarchical Agglomerative Clustering to Locate Potential Aspect Interference
    Bennett, Brian T.
    SOUTHEASTCON 2017, 2017,
  • [37] Robust clustering approach to fuzzy Gaussian mixture models for speaker identification
    Tran, Dat
    Wagner, Michael
    International Conference on Knowledge-Based Intelligent Electronic Systems, Proceedings, KES, 1999, : 337 - 340
  • [38] MIXTURE MODEL TESTS OF CLUSTER-ANALYSIS - ACCURACY OF 4 AGGLOMERATIVE HIERARCHICAL METHODS
    BLASHFIELD, RK
    PSYCHOLOGICAL BULLETIN, 1976, 83 (03) : 377 - 388
  • [39] Incremental Object Classification Using Hierarchical Generative Gaussian Mixture and Topology Based Feature Representation
    Jeong, Sungmoon
    Lee, Minho
    2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 925 - 932
  • [40] Speaker Verification Using Gaussian Mixture Model (GMM)
    Hussain, H.
    Salleh, S. H.
    Ting, C. M.
    Ariff, A. K.
    Kamarulafizam, I.
    Suraya, R. A.
    5TH KUALA LUMPUR INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING 2011 (BIOMED 2011), 2011, 35 : 560 - +