Bit-Serial multiplier based Neural Processing Element with Approximate adder tree

被引:1
|
作者
Jo, Cheolwon [1 ]
Lee, KwangYeob [2 ]
机构
[1] Seokyeong Univ, Dept Elect & Comp Engn, Seoul, South Korea
[2] Seokyeong Univ, Dept Comp Engn, Seoul, South Korea
关键词
Deep Learning; Accelerator; MOA; LOA; low power;
D O I
10.1109/ISOCC50952.2020.9332993
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning algorithms are computationally intensive and require dedicated hardware accelerators. Deep learning algorithms repeat multiply-accumulate (MAC) operations. This process produces a large number of partial sums that account for about 60% of the total logic. Therefore, optimizing multi-operand adders (MOA) that add these partial sums can reduce the high resource utilization of deep learning accelerators. This study designed a neural processing element with approximate adders that reduces resource utilization without changing the accuracy of deep learning algorithms by using the fault tolerance property of deep learning algorithms. As a result, the accuracy dropped by only 0.04% with 4.7% less resource usage.
引用
收藏
页码:286 / 287
页数:2
相关论文
共 50 条
  • [31] A Hardware Implementation of Word-Parallel Bit-Serial Polynomial Basis Multiplier
    Cho, Yong Suk
    Choi, Jae Yeon
    COMPUTER APPLICATIONS FOR GRAPHICS, GRID COMPUTING, AND INDUSTRIAL ENVIRONMENT, 2012, 351 : 176 - +
  • [32] A new bit-serial multiplier over GF(pm) using irreducible trinomials
    Chang, Nam Su
    Kim, Tae Hyun
    Kim, Chang Han
    Han, Dong-Guk
    Lim, Jongin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (02) : 355 - 361
  • [33] Bit-serial, high-speed image processing system
    Katayama, Hiroshi
    Kanie, Youji
    Taniguchi, Keiji
    Kinoshita, Hiroji
    Systems and Computers in Japan, 1992, 23 (02): : 64 - 80
  • [34] A CMOS DESIGN STRATEGY FOR BIT-SERIAL SIGNAL-PROCESSING
    MURRAY, AF
    DENYER, PB
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1985, 20 (03) : 746 - 753
  • [35] High speed bit-serial parallel processing on array architecture
    Ito, K
    Shimizugashira, T
    Kunieda, H
    PROCEEDINGS OF THE ASP-DAC '97 - ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE 1997, 1996, : 667 - 668
  • [36] A BIT-SERIAL VLSI ARCHITECTURAL METHODOLOGY FOR SIGNAL-PROCESSING
    LYON, RF
    COMPUTER NETWORKS AND ISDN SYSTEMS, 1982, 6 (03): : 228 - 228
  • [37] SIMDRAM: A Framework for Bit-Serial SIMD Processing using DRAM
    Hajinazar, Nastaran
    Oliveira, Geraldo F.
    Gregorio, Sven
    Ferreira, Joao Dinis
    Ghiasi, Nika Mansouri
    Patel, Minesh
    Alser, Mohammed
    Ghose, Saugata
    Gomez-Luna, Juan
    Mutlu, Onur
    ASPLOS XXVI: TWENTY-SIXTH INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS, 2021, : 329 - 345
  • [38] Colonnade: A Reconfigurable SRAM-Based Digital Bit-Serial Compute-In-Memory Macro for Processing Neural Networks
    Kim, Hyunjoon
    Yoo, Taegeun
    Kim, Tony Tae-Hyoung
    Kim, Bongjin
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2021, 56 (07) : 2221 - 2233
  • [39] A BIT-SERIAL VLSI ARRAY-PROCESSING CHIP FOR IMAGE-PROCESSING
    HEATON, R
    BLEVINS, D
    DAVIS, E
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1990, 25 (02) : 364 - 368
  • [40] Neural Cache: Bit-Serial In-Cache Acceleration of Deep Neural Networks
    Eckert, Charles
    Wang, Xiaowei
    Wang, Jingcheng
    Subramaniyan, Arun
    Iyer, Ravi
    Sylvester, Dennis
    Blaauw, David
    Das, Reetuparna
    IEEE MICRO, 2019, 39 (03) : 11 - 19