Characterization of generalized Haar spaces

被引:1
|
作者
Bartelt, M [1 ]
Li, W [1 ]
机构
[1] Old Dominion Univ, Dept Math & Stat, Norfolk, VA 23529 USA
关键词
D O I
10.1006/jath.1996.3108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We say that a subset G of C-0(T, R-k) is rotation-invariant if (Qg: g is an element of G) = G for any k x k orthogonal matrix e. Let G be a rotation-invariant finite-dimensional subspace of C-0(T, R-k) on a connected, locally compact, metric space T. We prove that G is a generalized Haar subspace if and only if P-G(f) is strongly unique of order 2 whenever P-G(f) is a singleton. (C) 1998 Academic Press.
引用
收藏
页码:101 / 115
页数:15
相关论文
共 50 条
  • [41] Multivariate Haar systems in Besov function spaces
    Oswald, P.
    SBORNIK MATHEMATICS, 2021, 212 (06) : 810 - 842
  • [42] Haar series and spaces determined by the Paley function
    Astashkin, S. V.
    Semenov, E. M.
    DOKLADY MATHEMATICS, 2012, 86 (01) : 539 - 541
  • [43] The Haar system in Besov-type spaces
    Yuan, Wen
    Sickel, Winfried
    Yang, Dachun
    STUDIA MATHEMATICA, 2020, 253 (02) : 129 - 162
  • [44] On the geometry of spaces of homogeneous type and the democracy of Haar systems in Lorentz spaces
    Aimar, Hugo
    Bernardis, Ana
    Nowak, Luis
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 476 (02) : 464 - 479
  • [45] Generalized Multi-Polarity Haar Transform
    Falkowski, BJ
    2002 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL V, PROCEEDINGS, 2002, : 757 - 760
  • [46] Absolute convergence of series by the generalized Haar system
    Mahashev, S. T.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2010, 57 (01): : 34 - 38
  • [47] Dini - Lipschitz Test on the Generalized Haar Systems
    Shcherbakov, V., I
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2016, 16 (04): : 435 - 448
  • [48] eGHWT: The Extended Generalized Haar–Walsh Transform
    Naoki Saito
    Yiqun Shao
    Journal of Mathematical Imaging and Vision, 2022, 64 : 261 - 283
  • [49] ANOTHER CHARACTERIZATION OF HAAR SUBSPACES
    MCLAUGHLIN, HW
    SOMERS, KB
    JOURNAL OF APPROXIMATION THEORY, 1975, 14 (02) : 93 - 102
  • [50] Characterization of normed linear spaces with generalized Mazur intersection property
    Dong, Yunbai
    Cheng, Qingjin
    STUDIA MATHEMATICA, 2013, 219 (03) : 193 - 200