Characterization of generalized Haar spaces

被引:1
|
作者
Bartelt, M [1 ]
Li, W [1 ]
机构
[1] Old Dominion Univ, Dept Math & Stat, Norfolk, VA 23529 USA
关键词
D O I
10.1006/jath.1996.3108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We say that a subset G of C-0(T, R-k) is rotation-invariant if (Qg: g is an element of G) = G for any k x k orthogonal matrix e. Let G be a rotation-invariant finite-dimensional subspace of C-0(T, R-k) on a connected, locally compact, metric space T. We prove that G is a generalized Haar subspace if and only if P-G(f) is strongly unique of order 2 whenever P-G(f) is a singleton. (C) 1998 Academic Press.
引用
收藏
页码:101 / 115
页数:15
相关论文
共 50 条
  • [21] Optimal quadrature for Haar wavelet spaces
    Heinrich, S
    Hickernell, FJ
    Yue, RX
    MATHEMATICS OF COMPUTATION, 2004, 73 (245) : 259 - 277
  • [22] HAAR POLYNOMIALS ON CARTESIAN PRODUCT SPACES
    GROSOF, MS
    NEWMAN, DJ
    DUKE MATHEMATICAL JOURNAL, 1969, 36 (01) : 193 - &
  • [23] Unconditional Haar bases for Lebesgue spaces on spaces of homogeneous type
    Aimar, H
    Gorosito, O
    WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VIII PTS 1 AND 2, 2000, 4119 : 556 - 563
  • [24] Uniqueness Theorems for Generalized Haar Systems
    Gevorkyan, G. G.
    Navasardyan, K. A.
    MATHEMATICAL NOTES, 2018, 104 (1-2) : 10 - 21
  • [25] Uniqueness Theorems for Generalized Haar Systems
    G. G. Gevorkyan
    K. A. Navasardyan
    Mathematical Notes, 2018, 104 : 10 - 21
  • [26] THE GENERALIZED HAAR-WALSH TRANSFORM
    Irion, Jeff
    Saito, Naoki
    2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 472 - 475
  • [27] Characterization of Day-James Spaces and Generalized Day-James Spaces
    Li, Jin Huan
    Liu, San Yang
    Ling, Bo
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (07) : 813 - 820
  • [28] Characterization of associate spaces of generalized weighted weak-Lorentz spaces and embeddings
    Gogatishvili, Amiran
    Aykol, Canay
    Guliyev, Vagif S.
    STUDIA MATHEMATICA, 2015, 228 (03) : 223 - 233
  • [29] Generalized functionals in Gaussian spaces: The characterization theorem revisited
    Kondratiev, YG
    Leukert, P
    Potthoff, J
    Streit, L
    Westerkamp, W
    JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 141 (02) : 301 - 318
  • [30] GENERALIZED ANGLES AND A CHARACTERIZATION OF INNER PRODUCT-SPACES
    DIMINNIE, CR
    ANDALAFTE, EZ
    FREESE, RW
    HOUSTON JOURNAL OF MATHEMATICS, 1988, 14 (04): : 475 - 480