Multivariate Haar systems in Besov function spaces

被引:1
|
作者
Oswald, P. [1 ]
机构
[1] Univ Bonn, Inst Numer Simulat, Bonn, Germany
关键词
Haar system; Besov spaces; Schauder bases in quasi-Banach spaces; unconditional convergence; piecewise-constant approximation; CLASSICAL FUNCTION-SPACES; SPLINE BASES; UNCONDITIONAL CONVERGENCE; APPROXIMATION;
D O I
10.1070/SM9398
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine all cases for which the d-dimensional Haar wavelet system H-d on the unit cube I-d is a conditional or unconditional Schauder basis in the classical isotropic Besov function spaces B-p,q,1(s)(I-d), 0 < p, q < infinity, 0 <= s < 1/p, defined in terms of first-order L-p-moduli of smoothness. We obtain similar results for the tensor-product Haar system <(H)over tilde>(d), and characterize the parameter range for which the dual of B-p,q,1(s) (I-d) is trivial for 0 < p < 1.
引用
收藏
页码:810 / 842
页数:33
相关论文
共 50 条