Generalized conjugacy in Hamilton-Jacobi theory for fully convex Lagrangians
被引:0
|
作者:
Goebel, R
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Ctr Control Engn & Computat, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Ctr Control Engn & Computat, Santa Barbara, CA 93106 USA
Goebel, R
[1
]
Rockafellar, RT
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif Santa Barbara, Ctr Control Engn & Computat, Santa Barbara, CA 93106 USA
Rockafellar, RT
机构:
[1] Univ Calif Santa Barbara, Ctr Control Engn & Computat, Santa Barbara, CA 93106 USA
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
Control problems with fully convex Lagrangians and convex initial costs are considered. Generalized conjugacy and envelope representation in terms of a dualizing kernel are employed to recover the initial cost from the value function at some, fixed future time, leading to a generalization of the cancellation rule for inf-convolution. Such recovery is possible subject to persistence of trajectories of a generalized Hamiltonian system, associated with the Lagrangian. Global analysis of Hamiltonian trajectories is carried out, leading to conditions on the Hamiltonian, and the corresponding Lagrangian, guaranteeing persistence of the trajectories.
机构:
SISSA, via Beirut 2, 34014 Trieste, ItalySISSA, via Beirut 2, 34014 Trieste, Italy
Dal Maso, Gianni
Frankowska, Hélène
论文数: 0引用数: 0
h-index: 0
机构:
CNRS, Centre de Recherche Viabilité, Jeux, Contrôle, Université de Paris-Dauphine, 75775 Paris Cedex 16, FranceSISSA, via Beirut 2, 34014 Trieste, Italy