Generalized conjugacy in Hamilton-Jacobi theory for fully convex Lagrangians

被引:0
|
作者
Goebel, R [1 ]
Rockafellar, RT
机构
[1] Univ Calif Santa Barbara, Ctr Control Engn & Computat, Santa Barbara, CA 93106 USA
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
convex value functions; inf-convolution; Hopf-Lax formula; nonsmooth Hamiltonian dynamics; generalized conjugacy; fully convex Lagrangians; optimal control;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Control problems with fully convex Lagrangians and convex initial costs are considered. Generalized conjugacy and envelope representation in terms of a dualizing kernel are employed to recover the initial cost from the value function at some, fixed future time, leading to a generalization of the cancellation rule for inf-convolution. Such recovery is possible subject to persistence of trajectories of a generalized Hamiltonian system, associated with the Lagrangian. Global analysis of Hamiltonian trajectories is carried out, leading to conditions on the Hamiltonian, and the corresponding Lagrangian, guaranteeing persistence of the trajectories.
引用
收藏
页码:463 / 473
页数:11
相关论文
共 50 条
  • [31] Convex ENO schemes for hamilton-jacobi equations
    Lin, Chi-Tien
    Liu, Xu-Dong
    JOURNAL OF SCIENTIFIC COMPUTING, 2007, 31 (1-2) : 195 - 211
  • [32] Hamilton-Jacobi approach for linearly acceleration-dependent Lagrangians
    Aguilar-Salas, Alejandro
    Rojas, Efrain
    ANNALS OF PHYSICS, 2021, 430
  • [33] A generalized method of characteristics in the theory of Hamilton-Jacobi equations and conservation laws
    Kolpakova, E. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2010, 16 (05): : 95 - 102
  • [34] The research of the quantum Hamilton-Jacobi theory
    Lin, Chang
    Lin, Mai-mai
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (05) : 1958 - 1961
  • [35] HAMILTON-JACOBI THEORY WITH MIXED CONSTRAINTS
    BERGMANN, PG
    TRANSACTIONS OF THE NEW YORK ACADEMY OF SCIENCES, 1971, 33 (01): : 108 - &
  • [36] A HAMILTON-JACOBI THEORY ON POISSON MANIFOLDS
    de Leon, Manuel
    Martin de Diego, David
    Vaquero, Miguel
    JOURNAL OF GEOMETRIC MECHANICS, 2014, 6 (01): : 121 - 140
  • [37] Structural aspects of Hamilton-Jacobi theory
    Carinena, J. F.
    Gracia, X.
    Marmo, G.
    Martinez, E.
    Munoz-Lecanda, M. C.
    Roman-Roy, N.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2016, 13 (02)
  • [38] PATH CONCEPTS IN HAMILTON-JACOBI THEORY
    LANDAUER, R
    AMERICAN JOURNAL OF PHYSICS, 1952, 20 (06) : 363 - 367
  • [39] HAMILTON-JACOBI THEORY OF CONTINUOUS SYSTEMS
    GULER, Y
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1987, 100 (02): : 251 - 266
  • [40] Hamilton-Jacobi Theory and Information Geometry
    Ciaglia, Florio M.
    Di Cosmo, Fabio
    Marmo, Giuseppe
    GEOMETRIC SCIENCE OF INFORMATION, GSI 2017, 2017, 10589 : 495 - 502